Online citations, reference lists, and bibliographies.
← Back to Search

Development Of A T1 Contrast Agent For Magnetic Resonance Imaging Using MnO Nanoparticles.

Hyon Bin Na, J. Lee, Kwangjin An, Y. Park, Mihyun Park, I. S. Lee, D. Nam, S. Kim, S. Kim, S. Kim, Keun-Ho Lim, Ki-soo Kim, S. Kim, T. Hyeon
Published 2007 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Nanometer-sized colloidal particles (nanoparticles) have been extensively used in biomedical applications as a result of their many useful electronic, optical, and magnetic properties that are derived from their nanometer size and composition. Semiconductor nanoparticles (also known as quantum dots) have been applied as fluorescent probes for cell labeling in optical imaging, and gold nanoparticles derivatized with oligonucleotides have been used for sensing complementary DNA strands. Magnetic nanoparticles have been applied to contrast-enhancement agents for magnetic resonance imaging (MRI), magnetic carriers for drug-delivery systems, biosensors, and bioseparation. MRI is one of the most powerful imaging techniques for living organisms as it provides images with excellent anatomical details based on soft-tissue contrast and functional information in a non-invasive and real-time monitoring manner. MRI has further advanced by the development of contrast agents that enable more specific and clearer images and enlargements of detectable organs and systems, leading to a wide scope of applications of MRI not only for diagnostic radiology but also for therapeutic medicine. Current MRI contrast agents are in the form of either paramagnetic complexes or magnetic nanoparticles. Paramagnetic complexes, which are usually gadolinium (Gd) or manganese (Mn) chelates, accelerate longitudinal (T1) relaxation of water protons and exert bright contrast in regions where the complexes localize. For instance, gadolinium diethylenetriaminepentaacetate (Gd-DTPA) has been the most widely used of such complexes and its main clinical applications are focused on detecting the breakage of the blood-brain barrier (BBB) and changes in vascularity, flow dynamics, and perfusion. Manganese-enhanced MRI (MEMRI), which uses manganese ion (Mn) as a T1 contrast agent, is applicable to animals only owing to the toxicity of Mn when it accumulates excessively in tissues and despite the increasing appreciation of this technique in neuroscience research. The recent development of molecular and cellular imaging to help visualize disease-specific biomarkers at the molecular and cellular levels has led to an increased interest in magnetic nanoparticles as MRI contrast agents. In particular, superparamagnetic iron oxide (SPIO) has emerged as the prevailing agent so far. 10] However, the negative contrast effect and magnetic susceptibility artifacts of iron oxide nanoparticles are significant drawbacks of using SPIO in MRI. The resulting dark signal can mislead the clinical diagnosis in T2-weighted MRI because the signal is often confused with the signals from bleeding, calcification, or metal deposits, and the susceptibility artifacts distort the background image. For the extensive applications of MRI to diagnostic radiology and therapeutic medicine and to overcome the [*] Prof. J. H. Lee, Prof. S. T. Kim, Prof. S.-H. Kim Department of Radiology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul 135-710 (Korea) Fax: (+82)2-3410-0084 E-mail: junghee42.lee@smc.samsung.co.kr
This paper references
10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science.
C. Niemeyer (2001)
10.1002/ANIE.200352744
Oligofunctional DNA-gold nanoparticle conjugates.
C. Niemeyer (2003)
10.1002/NBM.924
Iron oxide MR contrast agents for molecular and cellular imaging
J. Bulte (2004)
10.1126/SCIENCE.297.5586.1536
Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.
Y. Cao (2002)
10.1021/CR030067F
Nanostructures in biodiagnostics.
N. Rosi (2005)
10.1148/radiol.2322042523
MRI from Picture to Proton
D. McRobbie (2003)
10.1126/SCIENCE.1077194
In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles
B. Dubertret (2002)
10.1021/JA0359310
Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration.
Hongwei Gu (2003)
10.1126/SCIENCE.289.5485.1757
Scanometric DNA array detection with nanoparticle probes.
T. Taton (2000)
10.1039/B207789B
Chemical synthesis of magnetic nanoparticles.
T. Hyeon (2003)
10.1002/ANIE.200603052
Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma.
J. Lee (2006)
10.1039/B514130C
Biofunctional magnetic nanoparticles for protein separation and pathogen detection.
Hongwei Gu (2006)
10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E
DNA-Directed Functionalization of Colloidal Gold with Proteins This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. We thank Prof. D. Blohm for helpful discussions and generous support.
C. Niemeyer (2001)
10.1002/1521-3757(20011001)113:19<3798::AID-ANGE3798>3.0.CO;2-E
DNA‐vermittelte Funktionalisierung von Goldkolloiden mit Proteinen
C. Niemeyer (2001)
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org These are not the final page numbers! Communications Imaging Agents
B. Dubertret (2002)
10.1002/1521-3757(20011119)113:22<4254::AID-ANGE4254>3.0.CO;2-D
Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften
C. Niemeyer (2001)
10.1002/ANIE.200504277
Colorimetric screening of DNA-binding molecules with gold nanoparticle probes.
Min Su Han (2006)
10.1182/BLOOD-2004-02-0655
Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.
A. Arbab (2004)
10.1002/SMLL.200500063
Sensitive detection of proteins using difunctional DNA-gold nanoparticles.
P. Hazarika (2005)
10.1002/3527602453
Nanobiotechnology :concepts, applications and perspectives
C. Niemeyer (2005)
10.1126/SCIENCE.1088755
Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins
J. Nam (2003)
10.1002/SMLL.200500214
Nanomaterial-based amplified transduction of biomolecular interactions.
J. Wang (2005)
10.1021/JA002535Y
Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein
H. Mattoussi (2000)
10.1002/ANIE.200352400
Size-dependent magnetic properties of colloidal Mn(3)O(4) and MnO nanoparticles.
W. Seo (2004)
10.1038/nbt1201-1141
Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells
J. Bulte (2001)
10.1126/SCIENCE.1066348
A Group-IV Ferromagnetic Semiconductor: MnxGe1−x
Y. Park (2002)
10.1126/SCIENCE.1067003
Array-Based Electrical Detection of DNA with Nanoparticle Probes
Sojung Park (2002)
10.1021/CR980440X
Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications.
P. Caravan (1999)
10.1038/nbt1159
Cell-specific targeting of nanoparticles by multivalent attachment of small molecules
R. Weissleder (2005)
10.1021/JA063177N
Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins.
I. S. Lee (2006)
10.1002/ANGE.200503873
Materialien für den resonanten Fluoreszenzenergietransfer (FRET): jenseits klassischer Donor‐Acceptor‐Kombinationen
K. Sapsford (2006)
10.1056/NEJMOA022749
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
M. Harisinghani (2003)
10.1126/SCIENCE.1104274
Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics
X. Michalet (2005)
10.1021/JA031776D
Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins.
C. Xu (2004)
10.1021/JA0565875
Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals.
J. Kim (2006)
10.1038/nbt994
In vivo cancer targeting and imaging with semiconductor quantum dots
X. Gao (2004)
10.1038/NMAT1390
Quantum dot bioconjugates for imaging, labelling and sensing
Igor L. Medintz (2005)
10.1038/nm1096
Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy
E. B. Voura (2004)
10.1002/0471220620
Nanoscale materials in chemistry
K. Klabunde (2001)
10.1126/SCIENCE.1112869
A Magnetic Nanoprobe Technology for Detecting Molecular Interactions in Live Cells
Jaejoon Won (2005)
10.1002/NBM.945
Manganese‐enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations
A. Silva (2004)
10.1016/S0720-048X(02)00332-7
Tissue-specific MR contrast agents.
Hanns-Joachim Weinmann (2003)
10.1021/JA0464802
Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles.
C. Xu (2004)
10.1126/SCIENCE.281.5385.2016
Quantum dot bioconjugates for ultrasensitive nonisotopic detection.
W. C. Chan (1998)
10.1038/nbt920
Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping
S. Kim (2004)
10.1002/mrm.20368
Manganese‐enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: Dose‐dependent and temporal evolution of T1 contrast
J. Lee (2005)
10.1021/JA0252072
Nanoscale Materials in Chemistry Edited by Kenneth J. Klabunde (Kansas State University). Wiley-Interscience: New York. 2001. xi + 292 pp. $99.95. ISBN: 0-471-38395-3.
T. Taton (2002)
10.1021/JA0422155
Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging.
Y. Jun (2005)
10.1126/SCIENCE.281.5385.2013
Semiconductor nanocrystals as fluorescent biological labels.
M. Bruchez (1998)
10.1038/nbt927
The use of nanocrystals in biological detection
P. Alivisatos (2004)
10.1038/NMAT1251
Ultra-large-scale syntheses of monodisperse nanocrystals
J. Park (2004)
10.1038/nmat961
Self-assembled nanoscale biosensors based on quantum dot FRET donors
Igor L. Medintz (2003)
10.1002/ANIE.200602471
Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy.
J. Kim (2006)
10.1002/ANIE.200503873
Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations.
K. Sapsford (2006)
10.1021/JA051833Y
Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling.
Ho-Taek Song (2005)
10.1021/JA052337C
In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals.
Y. Huh (2005)
10.1007/978-1-4757-6482-6
Scientific and clinical applications of magnetic carriers
U. Häfeli (1997)
10.1002/ADMA.200500722
A Reagentless Biosensing Assembly Based on Quantum Dot–Donor Förster Resonance Energy Transfer
Igor L. Medintz (2005)
10.1002/ADMA.200500786
Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges
Jesse M. Klostranec (2006)
Concepts, applications and perspectives
C. Niemeyer (2004)
10.1002/ANGE.200352744
Oligofunktionale Konjugate aus DNA und Gold-Nanopartikeln†
C. Niemeyer (2003)
10.1021/JA0362656
Synthesis of monodisperse nanocrystals of manganese oxides.
M. Yin (2003)
10.1073/PNAS.96.26.15256
Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination.
J. Bulte (1999)



This paper is referenced by
10.1021/acsnano.7b05215
Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication.
Chen Dai (2017)
10.1002/PSSA.201801008
Advances in Applications of Metal Oxide Nanomaterials as Imaging Contrast Agents
Dennis Anderson (2019)
Table of Content Editorial 4
R. Soffietti (2014)
10.1039/c4nr02680b
Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control.
Guoming Huang (2014)
10.1002/adma.201604105
Materials Chemistry of Nanoultrasonic Biomedicine.
Hai-lin Tang (2017)
10.1002/ADFM.201400221
Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics
Y. Chen (2014)
10.3389/fchem.2014.00109
The application of magnetic nanoparticles for the treatment of brain tumors
K. Mahmoudi (2014)
10.1021/nn403647t
Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.
Michele H Pablico-Lansigan (2013)
10.1201/b11760-7
Next Generation Magnetic Nanoparticles for Biomedical Applications
T. Thuy (2012)
10.1016/j.jconrel.2013.01.029
Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs.
M. Howell (2013)
10.1002/adma.201503381
A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity.
X. Cai (2015)
10.1016/j.jconrel.2015.04.020
Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer.
A. Z. Abbasi (2015)
10.4155/fmc.10.5
Nanomedicine strategies for molecular targets with MRI and optical imaging.
D. Pan (2010)
10.5772/13059
Magnetic and Multifunctional Magnetic Nanoparticles in Nanomedicine: Challenges and Trends in Synthesis and Surface Engineering for Diagnostic and Therapy Applications
L. C. Varanda (2011)
Apport de la microscopie electronique dans la compréhension des mécanismes d’interactions entre nanoparticules et cellules biologiques
Wael Rima (2012)
Development of Nanocarriers for Enhanced Pharmacological Effect of Isolates from Callicarpa vestita and Juniperus squamata along with Phytochemical Screening of the Plants
Vinay Deep Punetha (2017)
10.11159/nddte18.117
MAdCAM-1 Nanotargeting Uncovers Bowel Inflammation Foci inExperimental Model of Colitis
Marta Truffi (2018)
10.20381/RUOR-4454
Axon Tracing with Functionalized Paramagnetic Nanoparticles
H. Westwick (2011)
10.1016/j.biomaterials.2012.01.062
The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes.
Yi-Cheng Lee (2012)
10.1002/smll.200801258
Fabrication of MnxFe1-xO colloidal solid solution as a dual magnetic-resonance-contrast agent.
Donghyeuk Choi (2009)
10.1016/J.JIEC.2018.02.036
Thermotherapy for Na+/I− symporter-expressing cancer using anti-Na+/I− symporter antibody-conjugated magnetite nanoparticles
Hyeon-Gun Jee (2018)
10.1002/adfm.201907066
Manganese‐Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability
Xiaoqin Qian (2020)
10.1016/j.jcis.2016.09.010
Terbium-doped manganese carbonate nanoparticles with intrinsic photoluminescence and magnetic resonance imaging capacity.
Kang Liu (2017)
10.1021/nn300456z
In vivo clearance and toxicity of monodisperse iron oxide nanocrystals.
Luo Gu (2012)
10.1002/smll.201301673
Nanoprobes visualizing gliomas by crossing the blood brain tumor barrier.
Xihui Gao (2014)
10.1002/ADFM.201202233
MnO Nanocrystals: A Platform for Integration of MRI and Genuine Autophagy Induction for Chemotherapy
Y. Lu (2013)
Magnetic Materials for Biomedical Applications
M. Zilm (2016)
10.1109/ICIA.2007.4295717
Composite Contrast Approach for Cellular MRI using the Combination of Gadolinium Chelates and Iron Oxide Particles
Y. Kim (2007)
10.1016/J.JSSC.2008.05.022
Synthesis of uniform-sized bimetallic iron- nickel phosphide nanorods
K. Y. Yoon (2008)
10.1021/ar2000259
Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.
J. Lee (2011)
10.1039/c0dt00689k
Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment.
Thomas D. Schladt (2011)
Synthesis and In Vitro Characterization of Fe 3 +-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System
Lijun Wang (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar