Online citations, reference lists, and bibliographies.
← Back to Search

Micronization Of Gefitinib Using Solution‐Enhanced Dispersion By Supercritical CO2

J. Zhang, Q. Wang, Zhonglin Zhu, H. Qian, F. Jiang, Z. Wang, W. Liu, Dechun Huang
Published 2019 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1016/J.JCT.2015.12.022
Determination and correlation of solubility and thermodynamic properties of l-methionine in binary solvents of water + (methanol, ethanol, acetone)
T. Zhang (2016)
10.1016/J.JCOU.2017.04.015
Tailoring the particle microstructures of gefitinib by supercritical CO2 anti-solvent process
Guijin Liu (2017)
10.1016/J.SUPFLU.2012.03.004
Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2
A. Chen (2012)
10.1016/J.SUPFLU.2014.12.028
Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide
N. Esfandiari (2015)
10.1016/J.IJPHARM.2006.08.005
Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.
H. J. Park (2007)
10.1016/j.ijpharm.2017.12.041
Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
S. M. Abuzar (2018)
10.1016/J.ADDR.2007.03.025
Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
Takehiko Yasuji (2008)
10.2174/1381612821666150416101116
Tailoring Particle Microstructures via Supercritical CO₂ Processes for Particular Drug Delivery.
Guijin Liu (2015)
10.1016/J.SUPFLU.2015.08.009
Supercritical fluid micronization techniques for gastroresistant insulin formulations
Andrian Tandya (2016)
10.1016/J.SUPFLU.2004.04.003
High-pressure density and vapor–liquid equilibrium for the binary systems carbon dioxide–ethanol, carbon dioxide–acetone and carbon dioxide–dichloromethane
Matteo Stievano (2005)
10.1021/OP700054P
Convergent Approach for Commercial Synthesis of Gefitinib and Erlotinib
V. Chandregowda (2007)
10.1016/j.lungcan.2016.01.005
Association of pharmacokinetics and pharmacogenomics with safety and efficacy of gefitinib in patients with EGFR mutation positive advanced non-small cell lung cancer.
T. Hirose (2016)
10.1016/J.POWTEC.2007.07.016
Preparation of griseofulvin microparticles by supercritical fluid expansion depressurization process
Li Zhi-yi (2008)
10.1016/J.SUPFLU.2016.03.006
Micronization of etoposide using solution-enhanced dispersion by supercritical CO2
Cheng Yue (2016)
10.1016/j.bbagen.2016.05.011
Epidermal growth factor receptor inhibitor cancer drug gefitinib modulates cell growth and differentiation of acute myeloid leukemia cells via histamine receptors.
M. Yadav (2016)
10.1016/S0378-3812(96)03208-6
Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures
C. Chang (1997)
10.1007/s00280-007-0589-2
The relative bioavailability of gefitinib administered by granular formulation
M. Cantarini (2007)
10.1016/J.SUPFLU.2017.08.013
Preparation and characterization of naringenin microparticles via a supercritical anti-Solvent process
Miao Hong-gang (2018)
10.1016/J.CLINTHERA.2004.10.011
Relative bioavailability and safety profile of gefitinib administered as a tablet or as a dispersion preparation via drink or nasogastric tube: results of a randomized, open-label, three-period crossover study in healthy volunteers.
M. Cantarini (2004)
10.1007/s11095-015-1771-6
Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma
Chandraiah Godugu (2015)
10.1016/J.SUPFLU.2003.10.001
Mass and heat transfer analysis of SAS: effects of thermodynamic states and flow rates on droplet size
M. Mukhopadhyay (2004)
10.1016/J.POWTEC.2011.10.025
Precipitation of tretinoin and acetaminophen with solution enhanced dispersion by supercritical fluids (SEDS). Role of phase equilibria to optimize particle diameter
A. Tabernero (2012)
10.1002/CEAT.201500519
Effect of Solvent on Nanoparticle Production of β‐Carotene by a Supercritical Antisolvent Process
Hazuki Nerome (2016)
10.1016/J.SUPFLU.2012.11.022
Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent
W. Wang (2013)
10.1002/jps.23180
Physicochemical properties of epidermal growth factor receptor inhibitors and development of a nanoliposomal formulation of gefitinib.
Brian J. Trummer (2012)
10.1016/J.SUPFLU.2015.06.005
Preparation and characterization of baicalein powder micronized by the SEDS process
Yan Tingxuan (2015)
10.1002/CEAT.200800114
Precipitation and Characterization of Chelerythrine Microparticles by the Supercritical Antisolvent Process
H. Hong (2008)
10.1016/J.SUPFLU.2017.06.009
Polymorphic transition of lipid particles obtained with the PGSS process for pharmaceutical applications
L. Wollenweber (2018)
10.1021/IE2020334
Recrystallization and Micronization of 10-Hydroxycamptothecin by Supercritical Antisolvent Process
Y. Jiang (2012)
10.1038/nrc1506
Gefitinib — a novel targeted approach to treating cancer
R. Herbst (2004)
10.1016/J.SUPFLU.2017.10.015
Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC)
G. Sodeifian (2018)
10.1016/J.ADDR.2007.06.019
Micronization processes with supercritical fluids: fundamentals and mechanisms.
A. Martín (2008)
10.1016/J.JCRYSGRO.2007.09.010
Solvent effect on tolbutamide crystallization induced by compressed CO2 as antisolvent
P. Subra-Paternault (2007)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar