Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Liquid Dispersion In Static In‐line Mixers

A. Taweel, L. D. Walker
Published 1983 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Liquid/liquid dispersion in static mixers has been investigated using Lightnin “In-liner” mixing elements. The average drop size was found to decrease with increasing residence time, gradually approaching an equilibrium size whose magnitude agrees reasonably well with Kolmogoroff's theory for drop rupture in turbulent flows. The efficiency at which mechanical energy is utilized in the generation of new interfacial area was evaluated as a function of design and operating conditions and was found to be highest when the final drop size is much larger than the achievable equilibrium value. On a etudie la dispersion liquide-liquide dans des melangeurs statiques, en employant un dispositif de melange “Lightnin In-liner”. On a trouve que les dimensions moyennes des gouttes diminuent avec une augmentation du temps de sejour et s'approchent graduellement d'une dimension d'equilibre dont la grandeur concorde raisonnablement bien avec celle de la theorie de Kolmogoroff pour la rupture des gouttes dans les ecoulements turbulents. L'efficacite avec laquelle on utilise l'energie mecanique pour creer de la surface interfaciale a ete estimee dans les conditions de fonctionnement et dans des conditions fictives du design. On a trouve que cette efficacite etait la plus elevee lorsque la dimension finale de la goutte est beaucoup plus grande que la valeur d'equilibre realisable.
This paper references
10.1002/CITE.330530113
Some performance data of the Hi‐mixer — an in‐line mixer
K. Matsumura (1981)
10.1252/JCEJ.10.325
EFFECT OF DISPERSED-PHASE VISCOSITY ON THE MAXIMUM STABLE DROP SIZE FOR BREAKUP IN TURBULENT FLOW
Kunio Arai (1977)
10.1021/I260049A015
Drop Size Distributions Produced by Turbulent Pipe Flow of Immiscible Fluids through a Static Mixer
S. Middleman (1974)
10.1002/CITE.330510715
Zur Teilchengröße von Suspensionspolymerisaten. Teil II: Polymerisierendes Zweiphasensystem
F. Langner (1979)
10.1002/CITE.330530813
Kontinuierliches Emulgieren mit Rotor/Stator‐Maschinen: Einfluß der volumenbezogenen Dispergierleistung und der Verweilzeit auf die Emulsionsfeinheit
B. Koglin (1981)
10.1002/AIC.690220211
Drop size distributions and coalescence frequencies of liquid‐liquid dispersions in flow vessels
C. A. Coulaloglou (1976)
10.1002/AIC.690010303
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
J. Hinze (1955)
10.1021/I160054A015
An Effect of Hold-up on Drop Sizes in Liquid-Liquid Dispersions
M. S. Doulah (1975)
10.1016/0009-2509(79)85081-2
Sauter mean and maximum drop diameters of liquid-liquid dispersions in turbulent agitated vessels at low dispersed phase hold-up
W. J. McManamey (1979)
10.1002/CITE.330520802
Dispergieren im flüssigen Zweiphasensystem
A. Mersmann (1980)
10.1021/I160058A010
The Effect of Coalescence on the Average Drop Size in Liquid-Liquid Dispersions,
M. Delichatsios (1976)
10.1017/S0022112061000214
On the behaviour of liquid dispersions in mixing vessels
R. Shinnar (1961)
10.1021/I260009A018
Kinetics of Thermal Dealkylation of Alkylnaphthalenes
J. C. Bixel (1964)
10.1016/0009-2509(79)80035-4
Droplet diameters in agitated liquid-liquid systems
M. Baird (1979)
10.1002/CITE.330510504
Einsatz und Auslegung statischer Mischer
M. Pahl (1979)
10.1021/I160063A012
Breakage and Coalescence Processes in an Agitated Dispersion. Experimental System and Data Reduction
F. H. Verhoff (1977)



This paper is referenced by
10.1016/J.CES.2005.03.011
Using in-line static mixers to intensify gas-liquid mass transfer processes
A. Taweel (2005)
10.1016/J.CEJ.2018.05.104
Turbulent droplets dispersion in a pulsating flow type apparatus – New type of static disperser
M. Vasil’ev (2018)
10.1080/00986449208935977
INTERFACIAL AREA PRODUCTION AT A TEE JUNCTION
R. Long (1992)
10.1205/CHERD06206
LIQUID/LIQUID VISCOUS DISPERSIONS WITH A SMX STATIC MIXER
L. Fradette (2007)
Effect of Shear Produced by Pipe Fittings on the Drop Size Distributions in Turbulent Flow of Kerosene/Water Mixtures
Amer El-Hamouz (1999)
10.1016/J.CES.2004.04.010
New approach to the formulation of hydrogel beads by emulsification/thermal gelation using a static mixer
E. Belyaeva (2004)
10.1016/J.CES.2011.06.065
Formation of O/W emulsions by static mixers for pharmaceutical applications
N. Kiss (2011)
10.1002/AIC.10143
Continuous pilot plant–scale immobilization of yeast in κ‐carrageenan gel beads
C. Decamps (2004)
10.1205/026387602321143462
Two-Phase Laminar Flow Simulations in a Kenics Static Mixer: Standard Eulerian and Lagrangian Approaches
Z. Jaworski (2002)
10.1016/J.CES.2012.02.006
Flow regimes and drop break-up in SMX and packed bed static mixers
A. Baumann (2012)
Batch to continuous vinyl chloride suspension polymerization process : a feasibility study
Emeline Lobry (2012)
10.1016/J.CES.2013.08.056
Modeling of CO2 dissolution by static mixers using back flow mixing approach with application to geological storage
Mohsen Zirrahi (2013)
10.1080/01932699608943531
EFFECT OF CHEMICAL ADDITIVES ON THE STABILITY OF KEROSENE-WATER DISPERSIONS
A. C. Stewart (1996)
10.1002/AIC.12167
An analysis of liquid CO2 drop formation with and without hydrate formation in static mixers
H. Tajima (2010)
10.1016/J.CES.2005.12.022
Gas/liquid dispersions with a SMX static mixer in the laminar regime
L. Fradette (2006)
10.1016/J.CHERD.2018.07.029
Intensity and efficiency of droplet dispersion: Pulsating flow type apparatus vs. static mixers
M. Vasil’ev (2018)
10.1205/CHERD06180
Intensifying mass transfer between immiscible liquids : Using screen-type static mixers
A. M. Taweel (2007)
10.1002/AIC.13796
Elaboration of controlled structure foams with the SMX static mixer
E. Talansier (2013)
10.1016/J.CES.2015.12.022
Investigation of emulsification in static mixers by optical measurement techniques using refractive index matching
R. Häfeli (2016)
10.1080/00986440500511353
CHARACTERISTICS OF MICROMETER AND SUBMICROMETER SIZE O/W EMULSIONS PRODUCED BY RAMOND SUPERMIXER®
I. N. Seekkuarachchi (2006)
10.1002/CJCE.5450800416
Using a New Interfacial Area Transport Equation to Predict Interfacial Area in Co‐current Jet Mixers
S. Yarbro (2008)
10.22055/JACM.2019.30122.1686
Experimental Study of the Heat Transfer Enhancement in Concentric Tubes With Spherical and Pyramidal Protrusions
A. Khan (2020)
10.3929/ETHZ-A-006188043
Deaeration of fiber suspensions using tailored dispersions formed in static mixers
A. Baumann (2010)
10.1021/EF700584H
A Pilot-Scale Study of Alkali-Catalyzed Sunflower Oil Transesterification with Static Mixing and with Mechanical Agitation
D. Frascari (2008)
KAJIAN PENGGUNAAN HELICAL STATIC MIXER PADA IN-LINE BLENDING DALAM PROSES PENCAMPURAN BIODIESEL DAN MINYAK SOLAR DI AREA PERTAMBANGAN
F. Karuana (2018)
10.1016/J.IJMULTIPHASEFLOW.2011.01.004
Comparison between three static mixers for emulsification in turbulent flow
F. Théron (2011)
10.1016/J.CEP.2012.01.001
Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation
Félicie Theron (2012)
10.1016/J.CEP.2013.08.009
Static mixers: Effective means for intensifying mass transfer limited reactions
A. Taweel (2013)
10.1016/J.CES.2011.06.073
Turbulent liquid–liquid dispersion in SMV static mixer at high dispersed phase concentration
Emeline Lobry (2011)
10.1205/026387603322302968
Static Mixers in the Process Industries—A Review
R. Thakur (2003)
10.1021/ACS.IECR.5B01078
Mass Transfer in an Energy-Efficient High-Intensity Gas–Liquid Contactor
F. Azizi (2015)
Semantic Scholar Logo Some data provided by SemanticScholar