← Back to Search
The ‘infinity Cell’: A New Trapped‐ion Cell With Radiofrequency Covered Trapping Electrodes For Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
P. Caravatti, M. Allemann
Published 1991 · Chemistry
The excitation event in Fourier transform ion cyclotron resonance mass spectrometry is optimized in order to obtain more reliable relative signal intensities and enhance the ion-selection performance in multi-tandem mass spectrometric experiments. Standard trapped-ion cells suffer from the undesirable ejection of ions along the symmetry axis (z-axis) of the cell, which is oriented parallel to the magnetic field lines. This z-eiection effect is difficult to predict, and thus difficult to avoid, especially when complicated broad-band excitation schemes are applied to the ions. An improved trapped-ion cell design, referred to as the ‘Infinity Cell’, is discussed which eliminates z-ejection. The Infinity Cell concept is based on the finding that it is possible to model the electric excitation field of an infinitely long cell with a cell of finite dimensions. The virtual elimination of z-ejection effects is demonstrated in several suitable experiments by comparing the operation of the standard cell and the Infinity Cell.
This paper references
10.1016/0168-1176(87)83062-8
Ejection of low-mass charged particles in high magnetic field ICR spectrometers
M. Allemann (1987)
10.1103/PHYSREV.82.697
THE MEASUREMENT OF e/M BY CYCLOTRON RESONANCE
H. Sommer (1951)
10.1016/0168-1176(85)85056-4
External generation of ions in ICR spectrometry
P. Kofel (1985)
10.1016/0009-2614(74)89137-2
Fourier Transform Ion Cyclotron Resonance Spectroscopy
M. B. Comisarow (1974)
10.1016/0009-2614(80)80525-2
A new fourier-transform mass spectrometer with a superconducting magnet
M. Allemann (1980)
10.1021/AC00204A018
Field-corrected ion cell for ion cyclotron resonance
Curt iss D. Hanson (1990)
Basic concepts in linear systems: Theory and experiments
Theodore F. Bogart (1983)
10.1021/JA00312A015
Tailored excitation for Fourier transform ion cyclotron mass spectrometry
A. Marshall (1985)
10.1016/S0003-2670(00)86257-1
Developments in analytical fourier-transform mass spectrometry
R. Cody (1985)
10.1016/0168-1176(86)85019-4
Coupling of axial and radial motions in ICR cells during excitation
P. Kofel (1986)
10.1016/0168-1176(88)80002-8
Excitation of the z-motion of ions in a cubic icr cell
W. D. Hart (1988)
10.1021/AC00290A065
Tandem quadrupole-Fourier transform mass spectrometry of oligopeptides.
D. Hunt (1985)
10.1063/1.1684576
A Trapped Ion Analyzer Cell for Ion Cyclotron Resonance Spectroscopy
R. T. Mciver (1970)
10.1021/AC00204A017
Elimination of z-ejection in Fourier transform ion cyclotron resonance mass spectrometry by radio frequency electric field shimming.
M. Wang (1990)
This paper is referenced by
10.1007/s13361-012-0459-y
Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides
James R Kornacki (2012)
10.1007/s13361-010-0003-x
An External Matrix-Assisted Laser Desorption Ionization Source for Flexible FT-ICR Mass Spectrometry Imaging with Internal Calibration on Adjacent Samples
D. F. Smith (2011)
10.1016/0168-1176(95)04311-X
High front-end resolution collision-induced dissociation in Fourier transform ion cyclotron resonance mass spectrometry
S. Haebel (1995)
10.1002/(SICI)1096-9888(199912)34:12<1373::AID-JMS907>3.0.CO;2-#
Thermal energy distribution observed in electrospray ionization
Drahos (1999)
10.1002/RCM.2121
Complementary use of Fourier transform laser microprobe mass spectrometry and time-of-flight static secondary ion mass spectrometry for the study of the surface adsorption of organic dyes on silicate materials.
A. Busuioc (2005)
10.1016/0168-1176(92)85048-5
Theoretical mass and energy upper limits for thermal ions in Fourier transform ion cyclotron resonance mass spectrometry
M. A. May (1992)
10.1016/0301-0104(95)00288-X
Reactions of water clusters H+(H2O)n, n = 3−75, with diethyl ether
T. Schindler (1995)
10.1016/S1387-3806(01)00365-7
Dynamic ion trapping in a cylindrical open cell for fourier transform ion cyclotron resonance mass spectrometry
V. Frankevich (2001)
10.1039/c8an02094a
Structural analysis of peptides modified with organo-iridium complexes, opportunities from multi-mode fragmentation.
Christopher A. Wootton (2019)
Prix de thèse : Caractérisation de toxines peptidiques par spectrométrie de masse à haute résolution
L. Quinton (2006)
10.1021/acs.jpca.7b08604
Cryo IR Spectroscopy of [Hemin]+ Complexes in Isolation.
Sebastian Dillinger (2017)
10.1007/s10534-015-9895-z
Characterization of the iron-binding properties of pyoverdine using electron-capture dissociation-tandem mass spectrometry
Yulin Qi (2015)
10.1255/ejms.354
Reactivity and Structures of Hydrogenated Carbon Cluster Ions C n H x + (n = 8,20; x = 4–12) Derived from Polycyclic Aromatic Hydrocarbons toward Benzene: Ion/Molecule Reactions as a Probe for Ion Structures
X. Guo (2000)
10.1016/J.JASMS.2006.10.019
Evaluation of low energy CID and ECD fragmentation behavior of mono-oxidized thio-ether bonds in peptides
S. Chowdhury (2007)
10.1016/S1387-3806(03)00089-7
Gas phase basicity of silanaldehydes and silanones
Henri-Edouard Audier (2003)
10.1002/RCM.312
m/z‐Selective infrared multiphoton dissociation in a Penning trap using sidekick trapping and an rf‐tickle pulse
S. Hofstadler (2001)
10.1002/jms.1546
Transition metals as electron traps. I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper-peptide complexes in the gas phase.
F. Tureček (2009)
10.1002/1097-0231(20000815)14:15<1368::AID-RCM15>3.0.CO;2-V
The significance of monoisotopic and carbon-13 isobars for the identification of a 19-component dodecapeptide library by positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.
H. Ramjit (2000)
10.1002/JMS.1190301112
Linearized dipolar excitation and detection and quadrupolarized axialization in a cylindrical ion cyclotron resonance ion trap
S. Guan (1995)
10.1016/1044-0305(94)87003-9
Simulated ion trajectory and induced signal in ion cyclotron resonance ion traps. Effect of ion initial axial position on ion coherence, induced signal, and radial or z ejection in a cubic trap
Xinzhen Xiang (1994)
10.1016/J.TOXICON.2006.01.023
Fourier transform mass spectrometry: a powerful tool for toxin analysis.
L. Quinton (2006)
10.1016/S1044-0305(96)00252-8
rf Capacitive coupling with efficient gated trapping in internal matrix-assisted laser desorption ionization fourier transform ion cyclotron resonance
M. Easterling (1997)
10.1007/s13361-019-02308-1
Phase relationships in two-dimensional mass spectrometry
M. A. van Agthoven (2019)
10.1021/ac202267g
Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs.
H. Li (2011)
10.1002/RCM.1290060507
Theory of coupling axial and radial ion motion in an ion cyclotron resonance cell during off‐resonance excitation
A. Mordehai (1992)
10.1002/mas.21671
Evaluation of major historical ICR cell designs using electric field simulations.
E. Nikolaev (2020)
10.1039/c4dt03819c
Binding of an organo-osmium(II) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution Top-Down FT-ICR mass spectrometry.
Christopher A. Wootton (2015)
10.1039/B403880K
Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology.
M. Barrow (2005)
10.1255/ejms.336
An Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Study of 1,6-Methano[60]Fullerene-61,61-Dicarboxylic Acid
R. Zhang (2000)
10.1016/S0168-1176(97)00139-0
COLLISION-INDUCED DISSOCIATION AND POST-SOURCE DECAY OF MODEL DODECAPEPTIDE IONS CONTAINING LYSINE AND GLYCINE
X. Zhang (1997)
10.1111/j.1742-4658.2005.04659.x
Determination of thioxylo‐oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X‐ray crystallography
J. Jänis (2005)
10.1255/ejms.323
Evidence for an Alkene Metathesis Reaction during the Unimolecular Dissociation of (CH3)3COCHCH2•+
G. van der Rest (2000)
See more