Online citations, reference lists, and bibliographies.
← Back to Search

Nanoplatforms For Targeted Molecular Imaging In Living Subjects.

W. Cai, X. Chen
Published 2007 · Medicine, Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Molecular or personalized medicine is the future of patient management and molecular imaging plays a key role towards this goal. Recently, nanoplatform-based molecular imaging has emerged as an interdisciplinary field, which involves chemistry, engineering, biology, and medicine. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of diseases, nanoplatforms have been employed in every single biomedical imaging modality, namely, optical imaging, computed tomography, ultrasound, magnetic resonance imaging, single-photon-emission computed tomography, and positron emission tomography. Multifunctionality is the key advantage of nanoplatforms over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoplatform to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. In this Review, we will summarize the current state-of-the-art of nanoplatforms for targeted molecular imaging in living subjects.
This paper references
10.1161/01.CIR.0000044916.05919.8B
Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to &agr;v-Integrins
H. Leong-Poi (2003)
10.1016/J.COPBIO.2007.01.004
Molecular imaging with targeted contrast ultrasound.
B. Kaufmann (2007)
10.1056/NEJMOA022749
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
M. Harisinghani (2003)
10.1109/23.596981
MicroPET: a high resolution PET scanner for imaging small animals
S. Cherry (1996)
10.1161/01.CIR.0000093185.16083.95
Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles
P. Winter (2003)
10.1089/104303404322959506
In vivo trafficking and targeted delivery of magnetically labeled stem cells.
A. Arbab (2004)
10.1021/BC060035+
Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas.
X. Montet (2006)
10.1021/JA0422155
Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging.
Y. Jun (2005)
10.1038/nature02872
Revealing the world of RNA interference
Craig C. Mello (2004)
10.1021/NL047996M
Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles.
C. Kirchner (2005)
10.1166/JNN.2007.628
Semiconductor quantum dots for in vivo imaging.
Z. Li (2007)
10.2144/000112091
Multimodality tumor imaging targeting integrin alphavbeta3.
W. Cai (2005)
10.1038/NM0598-623
Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging
D. A. Sipkins (1998)
Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Tumors Using a Novel ανβ3-targeted Nanoparticle and 1.5 Tesla Magnetic Resonance Imaging
P. Winter (2003)
10.1038/nbt920
Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping
S. Kim (2004)
10.1002/(SICI)1522-2586(199902)9:2<228::AID-JMRI12>3.0.CO;2-K
Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent
W. S. Enochs (1999)
Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF--induced thermoablative therapy for human breast cancer in mice.
S. Denardo (2007)
10.1016/J.IJPHARM.2003.09.050
Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME).
T. Tanaka (2004)
10.1021/JA068360V
Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry.
Narayan Pradhan (2007)
10.1016/J.MVR.2006.09.003
The use of quantum dots for analysis of chick CAM vasculature.
J. Smith (2007)
10.1007/s10439-005-9002-7
Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
D. Thorek (2005)
10.1021/BC034151D
A dual fluorochrome probe for imaging proteases.
M. Kircher (2004)
10.1038/nnano.2006.170
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.
Z. Liu (2007)
10.1016/S0168-3659(99)00248-5
Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.
H. Maeda (2000)
10.1016/J.NANO.2006.11.008
The present and future of nanotechnology in human health care.
S. Sahoo (2007)
10.1016/J.EJRAD.2006.06.022
Ultrasound contrast agents: an overview.
D. Cosgrove (2006)
A Thiol-Reactive 18F-Labeling Agent, N-[2-(4-18F-Fluorobenzamido)Ethyl]Maleimide, and Synthesis of RGD Peptide-Based Tracer for PET Imaging of αvβ3 Integrin Expression
W. Cai (2006)
10.1364/AO.46.001924
Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy
Yong Eun Lee Koo (2007)
10.1038/NMAT1390
Quantum dot bioconjugates for imaging, labelling and sensing
Igor L. Medintz (2005)
10.1021/JA0434331
Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared.
S. Kim (2005)
10.1073/PNAS.0509425103
In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space.
R. Thorne (2006)
10.1016/S0952-7915(03)00073-6
The year(s) of the contrast agent - micro-MRI in the new millennium.
R. Pautler (2003)
10.1016/S1076-6332(05)80701-9
Indirect computed tomography lymphography using iodinated nanoparticles: time and dose response in normal canine lymph nodes.
E. Wisner (1995)
10.1021/CEN-V085N015.P015
BUILDING UP NANOTECH RESEARCH: Investments in CENTERS AND INSTITUTES underpin interdisciplinary efforts
A. Thayer (2007)
10.1038/nm1096
Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy
E. B. Voura (2004)
10.1166/JNN.2006.443
Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery.
M. Chavanpatil (2006)
10.1038/nbt1104-1360
Quantum dots as photosensitizers?
R. Bakalova (2004)
10.1109/MEMB.2004.1360405
Targeted imaging using ultrasound contrast agents
S.H. Bloch (2004)
10.1002/mrm.10465
Receptor‐mediated endocytosis of iron‐oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging
E. Ahrens (2003)
10.1148/RADIOLOGY.197.2.7480707
MR imaging of phagocytosis in experimental gliomas.
C. Zimmer (1995)
10.1161/01.RES.0000155722.17881.dd
Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle
K. Kelly (2005)
10.1148/RADIOLOGY.217.1.R00OC31152
Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis.
P. Reimer (2000)
10.2214/AJR.153.5.973
Contrast-enhanced CT of the liver and spleen: comparison of ionic and nonionic contrast agents.
R. Nelson (1989)
10.1002/dvdy.20524
Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos
Sandra Rieger (2005)
10.1007/s00418-005-0780-7
Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd–DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI)
Irena Paschkunova-Martic (2005)
10.1111/J.1740-8261.2005.00031.X
A review of small animal imaging planar and pinhole spect Gamma camera imaging.
K. Peremans (2005)
10.1016/S1076-6332(05)80343-5
Indirect computed tomography lymphography of subdiaphragmatic lymph nodes using iodinated nanoparticles in normal dogs.
E. Wisner (1995)
10.1038/NMAT1571
An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles
Oded Rabin (2006)
10.1117/1.2032458
Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging.
James R Mansfield (2005)
10.1126/SCIENCE.281.5385.2013
Semiconductor nanocrystals as fluorescent biological labels.
M. Bruchez (1998)
10.2967/jnumed.107.041095
Pharmacokinetic Characterization in Xenografted Mice of a Series of First-Generation Mimics for HLA-DR Antibody, Lym-1, as Carrier Molecules to Image and Treat Lymphoma
G. Denardo (2007)
10.1243/09544110360729072
Microbubble ultrasound contrast agents: A review
E. Stride (2003)
10.1016/J.COPBIO.2006.11.001
Emerging concepts in molecular MRI.
D. Sosnovik (2007)
10.1038/NMAT1775
FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents
W. Seo (2006)
10.1007/s11671-007-9061-9
Are quantum dots ready for in vivo imaging in human subjects?
W. Cai (2007)
10.1038/nm1247
Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo
M. Stroh (2005)
10.1073/pnas.152463399
Nanocrystal targeting in vivo
M. Akerman (2002)
10.1038/nbt1154
Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy
I. J. Vries (2005)
10.1038/nm1486
In vivo imaging of siRNA delivery and silencing in tumors
Z. Medarova (2007)
10.1158/0008-5472.CAN-04-1956
In vivo Near-Infrared Fluorescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts
X. Chen (2004)
10.1161/CIRCULATIONAHA.104.481515
Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression
H. Leong-Poi (2005)
10.1002/1522-2594(200009)44:3<433::AID-MRM14>3.0.CO;2-9
Magnetic resonance contrast enhancement of neovasculature with αvβ3‐targeted nanoparticles
S. Anderson (2000)
10.2174/187152006778226530
Anti-Angiogenic Cancer Therapy Based on Integrin αvβ3 Antagonism
W. Cai (2006)
10.1021/JA0386905
Semiconductor quantum dots for photodynamic therapy.
A. C. Samia (2003)
10.1289/ehp.7339
Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles
G. Oberdörster (2005)
Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging.
A. Chatziioannou (1999)
10.1038/nbt994
In vivo cancer targeting and imaging with semiconductor quantum dots
X. Gao (2004)
10.1364/OL.30.003048
Gold nanocages as contrast agents for spectroscopic optical coherence tomography.
Hu Cang (2005)
10.1146/ANNUREV.BIOENG.8.061505.095831
Fluorescence molecular imaging.
V. Ntziachristos (2006)
10.1021/JA0579816
Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging.
John P. Zimmer (2006)
10.1161/01.CIR.0000044020.27990.32
Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent: Implications for Rational Therapy of Restenosis
G. Lanza (2002)
10.1158/0008-5472.CAN-06-1480
In vitro and In vivo Characterization of 64Cu-Labeled AbegrinTM, a Humanized Monoclonal Antibody against Integrin αvβ3
W. Cai (2006)
10.1227/01.NEU.0000255334.95532.DD
QUANTUM DOTS ARE PHAGOCYTIZED BY MACROPHAGES AND COLOCALIZE WITH EXPERIMENTAL GLIOMAS
H. Jackson (2007)
10.1097/00004424-200003000-00007
Long-term effect of irradiation on lymph node uptake of interstitially delivered nanoparticulate contrast media.
E. Wisner (2000)
10.1148/RADIOL.2382042100
Multi-detector row CT angiography of pulmonary circulation with gadolinium-based contrast agents: prospective evaluation in 60 patients.
M. Rémy-Jardin (2006)
10.1002/mrm.20718
In vivo detection of single cells by MRI
E. Shapiro (2006)
10.1148/RADIOL.2283020872
Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study.
Y. Anzai (2003)
10.1021/NL052405T
Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects.
W. Cai (2006)
10.1593/NEO.05352
Nanoparticles for the optical imaging of tumor E-selectin.
M. Funovics (2005)
10.1038/nbt927
The use of nanocrystals in biological detection
P. Alivisatos (2004)
10.1097/00004424-200004000-00003
Molecular imaging of stretch-induced tissue factor expression in carotid arteries with intravascular ultrasound.
G. Lanza (2000)
10.1093/BRAIN/AWH191
In vivo MRI of brain inflammation in human ischaemic stroke.
A. Saleh (2004)
10.1161/01.CIR.0000084537.66419.7A
Serial Cardiac Magnetic Resonance Imaging of Injected Mesenchymal Stem Cells
J. D. Hill (2003)
10.1158/0008-5472.CAN-05-0382
Tomographic fluorescence mapping of tumor targets.
X. Montet (2005)
Application of annihilation coincidence detection to transaxial reconstruction tomography.
M. Phelps (1975)
10.1016/S1076-6332(12)80012-2
Iodinated nanoparticles for indirect computed tomography lymphography of the craniocervical and thoracic lymph nodes in normal dogs.
E. Wisner (1994)
10.1021/NL062336Y
Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels.
Narayan Pradhan (2007)
10.1021/BC060261J
Sentinel lymph node imaging using quantum dots in mouse tumor models.
B. Ballou (2007)
10.1021/NL051935M
Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe.
W. Mulder (2006)
10.1109/TUFFC.2006.1678189
Characterization of digital waveforms using thermodynamic analogs: detection of contrast-targeted tissue in vivo
M. S. Hughes (2006)
10.1158/0008-5472.CAN-06-1185
In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice.
H. Tada (2007)
10.1021/nl0347334
Probing the Cytotoxicity Of Semiconductor Quantum Dots.
Austin M. Derfus (2004)
10.1161/hc3601.094303
Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques
S. Flacke (2001)
10.1161/01.CIR.0000080326.15367.0C
Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to &agr;v&bgr;3
D. Ellegala (2003)
10.1126/SCIENCE.1104274
Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics
X. Michalet (2005)
PET: the merging of biology and imaging into molecular imaging.
M. Phelps (2000)
Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.
C. Catana (2006)
10.1097/00004424-200002000-00001
Time course of nodal enhancement with CT X-ray nanoparticle contrast agents: effect of particle size and chemical structure.
G. Mcintire (2000)
10.1126/SCIENCE.1083780
Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo
D. Larson (2003)
10.1089/CBR.2006.21.520
Lanthanide-loaded liposomes for multimodality imaging and therapy.
S. W. Zielhuis (2006)
10.1073/PNAS.0403918101
MRI detection of single particles for cellular imaging.
E. Shapiro (2004)
10.1148/RADIOLOGY.206.2.9457187
Superparamagnetic iron oxide particles (SH U 555 A): evaluation of efficacy in three doses for hepatic MR imaging.
K. Shamsi (1998)
10.1080/13645700600674252
Ultrasound imaging and contrast agents: A safe alternative to MRI?
M. Wink (2006)
10.1117/1.2437744
Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo.
X. Yu (2007)
10.1097/01.rli.0000135980.08491.33
Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance Imaging
C. Corot (2004)
10.1148/RADIOLOGY.214.2.R00FE19568
Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model.
A. Moore (2000)
10.1067/MJE.2000.105840
In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles.
G. Lanza (2000)
10.1148/RADIOL.2221010225
Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes.
M. Mack (2002)
10.1016/J.NANO.2005.03.002
Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.
E. Kawasaki (2005)
10.1039/B517615H
Gold nanostructures: engineering their plasmonic properties for biomedical applications.
Min Hu (2006)
10.1162/15353500200302163
Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging
Y. Lim (2003)
A combined PET/CT scanner for clinical oncology.
T. Beyer (2000)
10.1021/BC050002E
In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe.
A. Tsourkas (2005)
10.1038/35888
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
A. Fire (1998)
10.1073/PNAS.93.20.10763
Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy.
C. Xu (1996)
10.1148/RADIOLOGY.169.2.3174987
Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging.
R. Weissleder (1988)
10.1002/mrm.20747
In vivo magnetic resonance imaging of single cells in mouse brain with optical validation
C. Heyn (2006)
10.1038/nm1571
Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography
F. Hyafil (2007)
10.1309/KRNFWQQEUPLQL76L
Spectral Imaging and Pathology: Seeing More
R. Levenson (2004)
10.1016/S0076-6879(04)86001-4
Molecular and functional imaging of cancer: advances in MRI and MRS.
A. Pathak (2004)
10.1016/S1076-6332(96)80331-X
Indirect computed tomography lymphography using iodinated nanoparticles to detect cancerous lymph nodes in a cutaneous melanoma model.
E. Wisner (1996)
10.1161/01.ATV.0000235724.11299.76
Endothelial &agr;&ngr;&bgr;3 Integrin–Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis
P. Winter (2006)
10.1021/JA069336K
Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo.
J. Chen (2007)
10.1101/GAD.1047403
Molecular imaging in living subjects: seeing fundamental biological processes in a new light.
T. Massoud (2003)
10.1016/J.COPH.2006.04.004
Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery.
M. Mäe (2006)
10.1117/1.2339071
Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells.
A. Agrawal (2006)
10.1126/SCIENCE.1077194
In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles
B. Dubertret (2002)
10.1002/mrm.20391
Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles
A. Schmieder (2005)
10.1056/NEJMRA045004
Therapeutic potential of RNA interference.
M. Stevenson (2004)
10.1002/SMLL.200400118
Chemically functionalized carbon nanotubes.
K. Balasubramanian (2005)
10.2174/0929867053507379
Gadolinium meets medicinal chemistry: MRI contrast agent development.
Z. Zhang (2005)
10.1096/fj.05-4145fje
MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle
Willem J. M. Mulder (2005)
10.1038/ncpcardio0482
Technology Insight: optical coherence tomography—current status and future development
A. Low (2006)
10.1038/nrc1566
Cancer nanotechnology: opportunities and challenges
M. Ferrari (2005)
10.1016/J.ADDR.2006.09.015
Carbon nanotubes as nanomedicines: from toxicology to pharmacology.
L. Lacerda (2006)
10.2174/138161205774580796
Cell-penetrating peptides: mechanisms and applications.
S. El‐Andaloussi (2005)
Anti-Cancer Agents Med
W. Cai (2006)
10.1158/1535-7163.MCT-06-0395
How molecular imaging is speeding up antiangiogenic drug development
W. Cai (2006)
MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium.
V. Dousset (2006)
10.1158/1078-0432.CCR-06-1313
Monitoring Response to Anticancer Therapy by Targeting Microbubbles to Tumor Vasculature
G. Korpanty (2007)
10.1586/14737159.6.3.307
Nanotechnology for cancer diagnostics: promises and challenges
P. Grodzinski (2006)
10.1002/ANIE.200604245
Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells.
S. T. Selvan (2007)
10.1126/SCIENCE.281.5385.2016
Quantum dot bioconjugates for ultrasensitive nonisotopic detection.
W. C. Chan (1998)
10.1146/ANNUREV.BIOENG.7.060804.100432
Quantum dots as cellular probes.
A. Alivisatos (2005)
10.1016/J.NANO.2005.10.003
Nanomedicine and nanotoxicology: two sides of the same coin.
V. Kagan (2005)
10.1259/BJR/55735832
Optical coherence tomography.
A. Podoleanu (2005)
10.1177/153303460400300104
Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer
C. Loo (2004)
Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.small-journal.com 1853 Nanoscale Platforms for Medical Research
M. E. Phelps (2000)
Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.small-journal.com 1851 Nanoscale Platforms for Medical Research
E. B. Voura (2004)
10.1161/CIRCULATIONAHA.106.646380
Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis
M. Nahrendorf (2006)
10.1158/1078-0432.CCR-1004-0022
Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy
S. Denardo (2005)
10.1007/s003300100964
Ultrasound contrast agents: clinical applications
Jarl Å. Jakobsen (2001)
Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system.
E. Even-Sapir (2003)
10.1038/nm1467
Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging
Jaehyun Lee (2007)
10.1002/ijc.22581
Imaging of Vx‐2 rabbit tumors with ανβ3‐integrin‐targeted 111In nanoparticles
G. Hu (2007)
10.1002/mrm.20617
Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto‐optical nanoparticle
D. Sosnovik (2005)
10.1021/NL061498R
Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging.
J. Frías (2006)
10.1016/J.NANO.2005.12.001
Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology.
M. Horton (2006)
10.1038/nm729
Fluorescence molecular tomography resolves protease activity in vivo
V. Ntziachristos (2002)
10.1634/stemcells.2006-0074
Iron Particles for Noninvasive Monitoring of Bone Marrow Stromal Cell Engraftment into, and Isolation of Viable Engrafted Donor Cells from, the Heart
Daniel J Stuckey (2006)
10.1148/RADIOLOGY.166.2.3336717
Splenic lymphoma: ferrite-enhanced MR imaging in rats.
R. Weissleder (1988)
10.1002/SMLL.200600157
The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots.
Shih-Chieh Pu (2006)



This paper is referenced by
10.1007/978-0-387-69805-2_11
Imaging Mouse Models of Human Cancer
Jennifer A. Prescher (2012)
10.1007/s11051-013-2100-9
Surface modification: how nanoparticles assemble to molecular imaging probes
Huilong Tan (2013)
10.1021/acs.chemrev.5b00049
Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application.
J. Zhou (2015)
10.1016/B978-0-323-47347-7.00023-9
Gold Nanoparticles: Their Properties and Role as Therapeutic Anticancer Agents
Neenu Singh (2016)
10.1021/acsami.6b12469
Ruthenium(II) Complex Incorporated UiO-67 Metal-Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy.
R. Chen (2017)
10.1007/s12034-016-1165-3
Synthesis and characterization of magnetite/hydroxyapatite tubes using natural template for biomedical applications
M. Sneha (2016)
10.4137/BCI.S901
Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha
W. Cai (2008)
10.1155/2010/796303
Cancer therapy based on nanomaterials and nanocarrier systems
Weili Qiao (2010)
10.1016/j.colsurfb.2010.03.008
Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles.
M. Nakamura (2010)
10.1155/2018/3569758
A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs
V. N. Kalpana (2018)
Zirconium-89 for positron emission tomography and hydroxamate resin column for gallium-68 generator
A. Kasbollah (2013)
10.1088/2043-6254/ab38b0
Endophytic fungus Alternaria spp isolated from Rauvolfia tetraphylla root arbitrate synthesis of gold nanoparticles and evaluation of their antibacterial, antioxidant and antimitotic activities
B. Hemashekhar (2019)
10.1016/j.biomaterials.2015.08.001
Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging.
M. Yang (2015)
10.2174/1874471011104020131
PET tracers based on Zirconium-89.
Yin Zhang (2011)
10.2147/IJN.S33065
Nanotheranostics – a review of recent publications
L. Wang (2012)
10.1039/b805306e
Luminescent rare earth nanomaterials for bioprobe applications.
Jie Shen (2008)
10.1016/J.NANTOD.2009.04.002
Molecular Imaging with Single-Walled Carbon Nanotubes.
Hao Hong (2009)
Colloidal gold nanoparticles for cancer therapy: effects of particle size on treatment efficacy, toxicology, and biodistribution
Kate Y. J. Lee (2011)
10.1002/9780470767047.CH20
Biomedical Applications of Single-Walled Carbon Nanotubes
Weibo Cai (2011)
10.3724/SP.J.1260.2011.00301
Progress of the Dual-Modality Probes for Molecular Imaging: Progress of the Dual-Modality Probes for Molecular Imaging
Jiaguo Huang (2011)
10.1002/9781118742952.CH46
Metal‐Based Chelates and Nanosystems as MRI Contrast Agents
Sara Almeida de Figueiredo (2013)
10.1002/chem.201305072
General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal-organic precursors.
He Hu (2014)
10.1002/smll.201303933
Positron emitting magnetic nanoconstructs for PET/MR imaging.
Santosh Aryal (2014)
10.1021/la503228v
Sub-10 nm monoclinic Gd2O3:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging.
Jun Liu (2014)
10.4172/2157-7439.1000115
Nanotechnology and Diagnostic Imaging: New Advances in Contrast Agent Technology
Joshua E. Rosen (2011)
10.1002/ADFM.200701440
Biocompatible, Luminescent Silver@Phenol Formaldehyde Resin Core/Shell Nanospheres: Large‐Scale Synthesis and Application for In Vivo Bioimaging
S. Guo (2008)
10.1007/s11051-020-04800-2
Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae
E. M. Oliveira (2020)
10.1039/C5NJ00150A
One-pot and facile synthesis of anti-biofouling polymer-modified gadolinium-based nanoprobes for dual-modal imaging and long-lasting tracking
Di Wu (2015)
10.1016/j.biomaterials.2012.06.033
Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent.
Z. Liu (2012)
10.1016/S0065-2423(09)47004-5
Personalized clinical laboratory diagnostics.
Kewal K. Jain (2009)
10.1002/9783527610419.NTLS0192
Quantum Dots for Targeted Tumor Imaging
Eue-Soon Jang (2011)
10.1039/C1JM10918A
Evolution of Zinc Oxide Nanostructures through Kinetics Control.
J. Shi (2011)
See more
Semantic Scholar Logo Some data provided by SemanticScholar