Online citations, reference lists, and bibliographies.
← Back to Search

Energy Decomposition Analysis

Moritz von Hopffgarten, G. Frenking
Published 2012 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
The energy decomposition analysis (EDA) is a powerful method for a quantitative interpretation of chemical bonds in terms of three major expressions. The instantaneous interaction energy ΔEint between two fragments A and B in a molecule A–B is partitioned in three terms, namely, (1) the quasiclassical electrostatic interaction ΔEelstat between the fragments, (2) the repulsive exchange (Pauli) interaction ΔEPauli between electrons of the two fragments having the same spin, and (3) the orbital (covalent) interaction ΔEorb, which comes from the orbital relaxation and the orbital mixing between the fragments. The latter term can be decomposed into contributions of orbitals with different symmetry, which makes it possible to distinguish between σ, π, and δ bonding. After a short introduction into the theoretical background of the EDA, we present illustrative examples of main group and transition metal chemistry. The results show that the EDA terms can be interpreted in a chemically meaningful way, thus providing a bridge between quantum chemical calculations and heuristic bonding models of traditional chemistry. © 2011 John Wiley & Sons, Ltd.
This paper references
The steric na- ture of the bite
van Zeist W-J (2009)
10.1021/JP972657L
Theoretical Analysis of the Bonding between CO and Positively Charged Atoms
A. Lupinetti (1997)
10.1039/B711641C
Is my chemical universe localized or delocalized? is there a future for chemical concepts?
S. Shaik (2007)
10.1002/QUA.560320103
Bond strength and bond angles for hybrid orbitals composed of arbitrary sets of orbital angular momentum quantum number
C. Zhan (1987)
10.1021/JA00088A001
Nonclassical double bonds in ethylene analogs: influence of Pauli repulsion on trans bending and .pi.-bond strength. A density functional study
H. Jacobsen (1994)
Cycloheptatrienylium oxide
W vonE.Doering (1951)
10.1002/1521-3765(20021018)8:20<4693::AID-CHEM4693>3.0.CO;2-B
Structures, bond energies, heats of formation, and quantitative bonding analysis of main-group metallocenes [E(Cp)2] (E = Be-Ba, Zn, Si-Pb) and [E(Cp)] (E = Li-Cs, B-Tl).
V. M. Rayón (2002)
10.1002/(SICI)1521-3757(19990802)111:15<2370::AID-ANGE2370>3.0.CO;2-H
Isolierung und Struktur des OCNCO+-Ions
Ingrid Bernhardi (1999)
10.1007/S00214-007-0294-6
The strength of the σ-, π- and δ-bonds in Re2Cl82−
A. Krapp (2008)
10.1002/chin.198501001
THEORETICAL STUDY OF MULTIPLE METAL-METAL BONDS IN BINUCLEAR COMPLEXES OF GROUP 6D AND GROUP 7D TRANSITION ELEMENTS WITH THE GENERAL FORMULA M2CL4(PH3)4N+ (N = 0, 1, 2) BY THE HARTREE-FOCK-SLATER TRANSITION-STATE METHOD
T. Ziegler (1985)
10.1063/1.4792434
Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.
R. J. Azar (2013)
10.1002/ANGE.200701632
C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften
R. Tonner (2007)
Ox- idative insertion as frontside SN2 substitution: a theo- retical study of the model reaction system Pd + CH3Cl
FM Bickelhaupt (1995)
Aromaticity in metallaben- zenes
I Fernández (2007)
10.1021/AR00105A003
Polyhedral skeletal electron pair approach
D. Mingos (1984)
10.1021/JA993346M
Synthesis and Characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): A Stable Heavier Group 14 Element Analogue of an Alkyne
L. Pu (2000)
10.1021/JA042295C
Why do the heavy-atom analogues of acetylene E2H2 (E = Si-Pb) exhibit unusual structures?
M. Lein (2005)
10.1021/JA00073A035
Theoretical Investigation on Base-Induced 1,2-Eliminations in the Model System F- + CH3CH2F. The Role of the Base as Catalyst
F. Bickelhaupt (1993)
10.1126/science.1221138
Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond
H. Braunschweig (2012)
10.1007/S002140000228
Chemical bonding: state of the art in conceptual quantum chemistry An introduction
W. Schwarz (2001)
Quantentheoretische Beiträge zum Benzol - problem . I . Die Elektronenkonfiguration des Benzols und verwandter Verbindungen
E Hückel (1931)
10.1021/OM4007888
Reaction Pathways for Addition of H2 to Amido-Ditetrylynes R2N–EE–NR2 (E = Si, Ge, Sn). A Theoretical Study
M. Hermann (2013)
10.1002/1521-3749(200101)627:1<73::AID-ZAAC73>3.0.CO;2-A
The Structure of Carbon Suboxide, C3O2, in the Solid State
A. Ellern (2001)
10.1016/S0010-8545(02)00285-0
Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆
G. Frenking (2003)
Über Aro- matenkomplexe von Metallen I
EO Fischer (1955)
Theoretical study of multiple metal-metal bonds in binuclear complexes of group 6D and group 7D transition elements with the general formula M 2 Cl 4
T Ziegler
10.1002/CHIN.200643017
The Pb122‐ and Pb102‐ Zintl Ions and the M@Pb122‐ and M@Pb102‐ Cluster Series Where M: Ni, Pd, Pt.
E. N. Esenturk (2006)
10.1002/ZAAC.19532740603
Zur Kristallstruktur der Di‐cyclopentadienyl‐verbindungen des zweiwertigen Eisens, Kobalts und Nickels
W. Pfab (1953)
10.1039/JR9530002939
586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes
J. Chatt (1953)
10.1039/9781847551481-00111
The Dewar-chatt-Duncanson bonding model of transition metal-olefin complexes examined by modern quantum chemical methods
G. Leigh (2002)
10.1002/jcc.20469
Chemical fragments in real space: Definitions, properties, and energetic decompositions
Á. M. Pendás (2007)
Aromaticity and delocalization is a topic of a special issue entitled “ Delocalization - pi and sigma
D Cappel
10.1021/JA01477A052
HEXAPHENYLCARBODIPHOSPHORANE, (C6H5)3PCP(C6H5)3
F. Ramírez (1961)
10.1021/JP0724065
Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.
Y. Mo (2007)
10.1021/OM060274G
Oxidative addition versus dehydrogenation of methane, silane, and heavier AH(4) congeners reacting with palladium
J. V. Stralen (2006)
10.1016/J.JORGANCHEM.2005.02.013
Activation of C–H, C–C and C–I bonds by Pd and cis-Pd(CO)2I2. Catalyst–substrate adaptation
A. Diefenbach (2005)
10.1021/JA000663G
The Nature of the Transition Metal–Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond Energy Decomposition Analysis of TM(CO)6q (TMq = Hf2–, Ta1–, W0, Re1+, Os2+, Ir3+)
A. Diefenbach (2000)
The interplay of steric and electronic effects in S N 2 reactions. Chem-A Eur J
I Fernández (2009)
10.1007/bf01330865
Die freien Radikale der organischen Chemie: Quantentheoretische Beitrge zum Problem der aromatischen und ungesttigten Verbindungen. IV
Erich Hckel
10.1016/S0022-328X(01)01154-8
Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond ☆
G. Frenking (2001)
10.1002/chem.200701390
Divalent carbon(0) chemistry, part 1: Parent compounds.
R. Tonner (2008)
10.1021/OM020362A
Bis(benzene)chromium. 2. Its Discovery by E. O. Fischer and W. Hafner and Subsequent Work by the Research Groups of E. O. Fischer, H. H. Zeiss, F. Hein, C. Elschenbroich, and Others†
D. Seyferth (2002)
The sig- nificance of π interactions in group 11 complexes with N-heterocyclic carbenes
D Nemcsok (2004)
A discussion of the impact and importance of the work of G. N. Lewis to the theory of chemistry is presented in a special issue edited by Frenking G and Shaik S. 90 Years of chemical bonding
(2007)
10.1021/ct0501093
Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules.
M. Blanco (2005)
Orbital over- lap and chemical bonding
A Krapp (2006)
10.1002/9780470166512.CH1
Nonclassical Metal Carbonyls
A. Lupinetti (2007)
10.1002/EJIC.200801244
The Nature of the Metal–Carbene Bond in Normal and Abnormal Pyridylidene, Quinolylidene and Isoquinolylidene Complexes
G. Heydenrych (2009)
The na- ture of the transition metal-carbonyl bond and the question about valence orbitals of transition metals. A bond-energy decomposition analyses of TM(CO)6 (TMq = Hf2−, Ta−
A Diefenbach (2000)
10.1007/S00894-006-0149-4
Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes
M. Mitoraj (2007)
10.1007/BF01341953
Quanstentheoretische Beiträge zum Benzolproblem
E. Hückel (1931)
10.1021/JA00094A045
Reactions of Pulsed-Laser-Evaporated Be Atoms with CO2. Infrared Spectra of OCBeO and COBeO in Solid Argon
L. Andrews (1994)
10.1002/jcc.21034
Steric repulsions, rotation barriers, and stereoelectronic effects: A real space perspective
Á. M. Pendás (2009)
10.1002/jcc.20078
Accurate description of van der Waals complexes by density functional theory including empirical corrections
S. Grimme (2004)
10.1002/1521-3765(20011001)7:19<4155::AID-CHEM4155>3.0.CO;2-M
Iron bispentazole Fe(eta5-N5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene.
M. Lein (2001)
Di - benzol - chrom . Über Aro - matenkomplexe von Metallen I
EO Fischer (1955)
The strength of the σ -, π -and δ-bonds in Re 2 Cl 8
A Krapp
10.1016/0009-2614(86)80134-8
Are there neutral helium compounds which are stable in their ground state?: A theoretical investigation of HeBCH and HeBeO
W. Koch (1986)
10.1002/ANIE.198207113
Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture)
R. Hoffmann (1982)
10.1002/ANIE.200500452
Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes, and related compounds.
D. Cappel (2005)
10.1002/CHEM.200500376
An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
Y. Mo (2006)
10.1002/chem.201101915
Structures and stabilities of group 13 adducts [(NHC)(EX3)] and [(NHC)2(E2X(n))] (E=B to In; X=H, Cl; n=4, 2, 0; NHC=N-heterocyclic carbene) and the search for hydrogen storage systems: a theoretical study.
Nicole Holzmann (2011)
Structures, metalligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η 5 -E 5 ) 2 and FeCp
J Frunzke (2002)
10.1021/JA00232A009
Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation
G. Frenking (1988)
10.1002/CHIN.200324001
Structures and Bonding of the Sandwich Complexes [Ti(η5-E5)2]2- (E: CH, N, P, As, Sb): A Theoretical Study
M. Lein (2003)
10.1007/BF01341936
Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III
E. Hückel (1932)
The Pb 12 2− and Pb 10 2− Zintl Ions and the M@Pb 12 2− and M@Pb 10 M = Ni, Pd, Pt
E N Esenturk (2006)
Quantentheoretische Beiträge zum Ben- zolproblem. II. Quantentheorie der induzierten Po- laritäten
E. Hückel (1931)
Dicyclopentadi- enyliron
SA Miller (1952)
Synthesis and characteri- zation of 2,6-Trip2H3C6PbPbC6H3–2,6-Trip2 (Trip = C6H2–2,4,6-i-Pr3): a stable heavier group 14 ele- ment analogue of an alkyne
L Pu (2000)
10.1515/9781400850952.92
A REVIEW OF THE COMPLEX THEORY
C. Jung (2014)
10.1016/0022-2852(86)90239-0
The infrared spectrum of carbon suboxide in the ν6 fundamental region: Experimental observation and semirigid bender analysis
P. Jensen (1986)
10.1038/nchem.248
Coordination chemistry at carbon.
Manuel Alcarazo (2009)
Kohn Sham density functional theory: Predicting and understanding chem- istry
FM Bickelhaupt (2000)
Delocalization in metallocy- cles
DL Thorn (1979)
10.1016/S0009-2614(00)00237-2
An ab initio study on the equilibrium structure and CCC bending energy levels of carbon suboxide
J. Koput (2000)
The nature of the transition metal-carbonyl bond and the question about valence orbitals of transition metals. A bond-energy decomposition analyses of
A Diefenbach
10.1002/CHIN.200930275
Steric and Electronic Effects in SN2 Reactions
E. Uggerud (2009)
10.1021/J100401A010
Chemical properties from the promolecule
M. Spackman (1986)
10.1007/BF02401406
On the calculation of bonding energies by the Hartree Fock Slater method
T. Ziegler (1977)
10.1002/ANGE.200602552
Carbodiphosphorane: die Chemie von zweibindigem Kohlenstoff(0)
R. Tonner (2006)
10.1021/CR030095Y
Introduction: DelocalizationPi and Sigma
P. Schleyer (2005)
10.1021/CR030092L
Möbius aromaticity and delocalization.
H. Rzepa (2005)
10.1021/OM020397A
Structures, metal-ligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A theoretical study
J. Frunzke (2002)
10.1002/CHEM.200400525
The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
A. Kovács (2005)
10.1002/cphc.201300092
Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs.
M. García-Revilla (2013)
10.1002/anie.200802811
Twelve one-electron ligands coordinating one metal center: structure and bonding of [Mo(ZnCH3)9(ZnCp*)3].
T. Cadenbach (2008)
10.1021/JP031308Q
Carbonyl Boron and Related Systems: An ab Initio Study of B−X and YB⋮BY ( 1 Σ g + ), Where X = He, Ne, Ar, Kr, CO, CS, N 2 and Y = Ar, Kr, CO, CS, N 2
A. Papakondylis (2004)
[ Pt @ Pb 12 ] 2 −
EN Esenturk (2004)
10.1016/b978-0-08-012210-6.50038-7
Bulletin de la Société chimique de France
Société française de chimie (1997)
10.1007/BF01397394
Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik
W. Heitler (1927)
10.1002/wcms.53
Carbodicarbenes—divalent carbon(0) compounds exhibiting carbon–carbon donor–acceptor bonds
G. Frenking (2011)
10.1021/jp902780t
Molecules with all triple bonds: OCBBCO, N2BBN2, and [OBBBBO](2-).
Lucas C. Ducati (2009)
Quantum chemical in- vestigations of the phosphane complexes X3B–PY3 and X3Al–PY3 (X = H, F, Cl; Y = F, Cl, Me, CN)
C Loschen (2002)
10.1007/BF02401406
On the calculation of bonding energies by the Hartree Fock Slater method
T. Ziegler (1977)
10.1002/CBER.190603901103
Ueber das Kohlensuboxyd. I
O. Diels (1906)
10.1021/JA02261A002
The Atom and the Molecule
G. N. Lewis (1916)
10.1021/AR00072A001
The path of chemical reactions - the IRC approach
K. Fukui (1981)
10.1007/BF01330865
Die freien Radikale der organischen Chemie
E. Hückel (1933)
10.2174/138527206776818946
Intramolecular Electron Transfer: Computational Study Based on the Orbital Deletion Procedure (ODP)
Y. Mo (2006)
timetallocenes. A theoretical Study
A Velazquez (2007)
10.1002/1521-3757(20020415)114:8<1342::AID-ANGE1342>3.0.CO;2-A
N-Heterocyclische Carbene: ein neues Konzept in der metallorganischen Katalyse
Wolfgang A. Herrmann Prof. (2002)
10.1021/JA982746R
Structure and Electron Counting in Ternary Transition Metal Hydrides
T. Firman (1998)
10.1002/CHEM.200601674
Aromaticity in metallabenzenes.
I. Fernández (2007)
10.1016/S0065-2792(08)60027-8
Structural and Bonding Patterns in Cluster Chemistry
K. Wade (1976)
Aromaticity in metallabenzenes. Chem-A Eur J
I Fernández (2007)
idative insertion as frontside SN 2 substitution : a theoretical study of the model reaction system Pd + CH 3 Cl
FM Bickelhaupt (1995)
10.1007/BF00547827
Molecular orbital studies of hydrogen bonds
S. Iwata (1977)
10.1007/S00214-010-0758-Y
Toward a physical understanding of electron-sharing two-center bonds. II. Pseudo-potential based analysis of diatomic molecules
T. Bitter (2010)
10.1039/b926828f
The activation strain model of chemical reactivity.
Willem-Jan van Zeist (2010)
10.1021/OM020968Z
Bis(benzene)chromium Is a δ-Bonded Molecule and Ferrocene Is a π-Bonded Molecule†
V. M. Rayón (2003)
10.1002/9780470125922.CH1
Kohn-Sham DFT: Predicting and Understanding Chemistry
F. Bickelhaupt (2000)
10.1021/OM020311D
Nature of the Metal−Ligand Bond in M(CO)5PX3 Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, Molecular Structure, and Quantum-Chemical Calculations
G. Frenking (2002)
10.1021/JA00254A005
Helium chemistry: theoretical predictions and experimental challenge
W. Koch (1987)
10.1351/PAC-CON-08-11-03
Divalent carbon(0) compounds
G. Frenking (2009)
10.1063/1.1676210
Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O
K. Morokuma (1971)
10.1021/jp903963h
Chemical bonding in the N(2) molecule and the role of the quantum mechanical interference effect.
T. M. Cardozo (2009)
10.1002/jcc.20495
Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction
S. Grimme (2006)
Unicorns in the world of chemi- cal bonding models
G Frenking (2007)
Chemical bonding in phos- phane and amine complexes of main group elements and transition metals
F Bessac (2003)
Synthesis and characterization of 2,6-Dipp(2)-H(3)C(6)SnSnC(6)H(3)-2,6-Dipp(2) (Dipp = C(6)H(3)-2,6-Pr(i)(2)): a tin analogue of an alkyne.
A. D. Phillips (2002)
10.1002/ASIA.200700235
Bonding analysis of N-heterocyclic carbene tautomers and phosphine ligands in transition-metal complexes: a theoretical study.
R. Tonner (2007)
10.1021/ja00364a012
Theoretical study of the triple metal bond in d3-d3 binuclear complexes of chromium, molybdenum, and tungsten by the Hartree-Fock-Slater transition state method
T. Ziegler (1983)
10.1021/JA00297A013
When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet
S. Shaik (1985)
10.1063/1.4798224
Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals.
Paul R. Horn (2013)
10.1016/J.JORGANCHEM.2006.03.006
Oxidative addition to main group versus transition metals: Insights from the Activation Strain model
G. Jong (2006)
10.1002/CHEM.200600564
Orbital overlap and chemical bonding.
A. Krapp (2006)
10.1002/jcc.20531
Toward a physical understanding of electron‐sharing two‐center bonds. I. General aspects
T. Bitter (2007)
10.1021/OM700477B
Multimetallocenes. A Theoretical Study
Á. Velázquez (2007)
10.1021/IC020592H
Structures and bonding of the sandwich complexes [Ti(eta5-E5)2]2- (E = CH, N, P, As, Sb): a theoretical study.
M. Lein (2003)
10.1021/jo801215z
Nucleophilicity and leaving-group ability in frontside and backside S(N)2 reactions.
A. Bento (2008)
10.1038/1681039B0
A New Type of Organo-Iron Compound
T. Kealy (1951)
10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
Synthesis and characterization of a digermanium analogue of an alkyne.
M. Stender (2002)
10.1063/1.1580094
Geometrical optimization for strictly localized structures
Y. Mo (2003)
10.1021/JP047986+
Activation of H−H, C−H, C−C, and C−Cl Bonds by Pd(0). Insight from the Activation Strain Model
and Axel Diefenbach (2004)
10.1002/jcc.20543
Unicorns in the world of chemical bonding models
G. Frenking (2007)
10.1002/(SICI)1521-3773(19980817)37:15<2113::AID-ANIE2113>3.0.CO;2-2
Nonclassical Metal Carbonyls: Appropriate Definitions with a Theoretical Justification.
A. Lupinetti (1998)
10.1080/00268978200100471
Atoms in molecules
F. Escudero (1982)
10.1002/ANIE.200353287
[Pt@Pb12]2−
E. N. Esenturk (2004)
10.1039/B606835A
Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method.
I. Fernández (2007)
10.1002/chem.200701392
Divalent carbon(0) chemistry, part 2: Protonation and complexes with main group and transition metal Lewis acids.
R. Tonner (2008)
10.1039/C39880001147
Fixation of nitrogen and carbon monoxide by beryllium oxide: theoretical investigation of the structures and stabilities of NNBeO, OCBeO, and COBeO
G. Frenking (1988)
10.1021/jp800514n
Aromaticity and antiaromaticity in 4-, 6-, 8-, and 10-membered conjugated hydrocarbon rings.
Simon Pierrefixe (2008)
10.1002/CPHC.200700092
Transition-state energy and position along the reaction coordinate in an extended activation strain model.
G. T. de Jong (2007)
10.1021/IC034141O
Why is BCl3 a stronger Lewis acid with respect to strong bases than BF3?
F. Bessac (2003)
10.1002/1521-3749(200206)628:6<1294::AID-ZAAC1294>3.0.CO;2-B
Theoretical Studies of Inorganic Compounds. 19 1) Quantum Chemical Investigations of the Phosphane Complexes X3B‐PY3 and X3Al‐PY3 (X = H, F, Cl; Y = F, Cl, Me, CN)
Christoph Loschen (2002)
Calculation of bond- ing properties
G Frenking (2009)
10.1002/(SICI)1096-987X(19990115)20:1%3C114::AID-JCC12%3E3.0.CO;2-L
Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts
F. Bickelhaupt (1999)
10.1002/CHEM.200700206
Aromaticity: molecular-orbital picture of an intuitive concept.
Simon Pierrefixe (2007)
10.1126/SCIENCE.1101356
Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond
Irene Resa (2004)
The theoretical treatment of aromaticity is topic of a special issue entitled “ Aromaticity ”
E von (1951)
10.1515/ZNB-1952-0701
Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen
E. Fischer (1952)
10.1002/CHEM.200501405
Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method.
I. Fernández (2006)
10.1002/chem.200902024
Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
I. Fernández (2009)
Hafner and subsequent work by the research groups
Seyferth D. Bischromium (2002)
Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO) 5 TM-C 2 H x and Cl 4 TM-C 2 H x (TM = Cr
M S Nechaev (2004)
10.1038/148677c0
The Nature of the Chemical Bond and the Structure of Molecules and Crystals
Robert K. Fitzgerel (1941)
Os 2+ , Ir 3+ )
2 TmQHf (2000)
10.1021/ct0499478
Activation of H-H, C-H, C-C and C-Cl Bonds by Pd and PdCl(-). Understanding Anion Assistance in C-X Bond Activation.
A. Diefenbach (2005)
10.1021/JP073685Z
Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals.
R. Khaliullin (2007)
10.1021/ct600342j
Catalytic Carbon-Halogen Bond Activation:  Trends in Reactivity, Selectivity, and Solvation.
G. T. de Jong (2007)
10.1021/ct800503d
A Combined Charge and Energy Decomposition Scheme for Bond Analysis.
M. Mitoraj (2009)
10.1126/SCIENCE.1102209
A Stable Compound Containing a Silicon-Silicon Triple Bond
A. Sekiguchi (2004)
10.1021/OM049802J
The Significance of π Interactions in Group 11 Complexes with N-Heterocyclic Carbenes†
D. Nemcsok (2004)
10.1002/CPLU.201300169
Exploiting the Twofold Donor Ability of Carbodiphosphoranes: Theoretical Studies of [(PPh3 )2 C→EH2 ]q (Eq =Be, B+ , C2+ , N3+ , O4+ ) and Synthesis of the Dication [(Ph3 P)2 CCH2 ]2.
M. A. Çelik (2013)
10.1021/JA00332A025
Theoretical study of multiple metal-metal bonds in binuclear complexes of group 6D and group 7D transition elements with the general formula M2Cl4(PH3)4n+ (n=0, 1, 2) by the Hartree-Fock-Slater transition-state method
T. Ziegler (1984)
10.1007/bf01341953
Quanstentheoretische Beitrge zum Benzolproblem: II. Quantentheorie der induzierten Polaritten
Erich Hckel (1931)
10.1007/BF01339530
Quantentheoretische Beiträge zum Benzolproblem
E. Hückel (1931)
10.1002/chem.200901472
Molecular double-bond covalent radii for elements Li-E112.
P. Pyykkö (2009)
10.1590/S0103-50532008000200007
The nature of the chemical bond
M. C. Nascimento (2008)
10.1002/anie.200705620
Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand.
C. Dyker (2008)
10.1063/1.3085953
Energy partitioning for generalized product functions: the interference contribution to the energy of generalized valence bond and spin coupled wave functions.
T. M. Cardozo (2009)
10.1126/science.1224003
A Boron-Boron Triple Bond
G. Frenking (2012)
10.1063/1.2191500
An efficient self-consistent field method for large systems of weakly interacting components.
R. Khaliullin (2006)
Towards a rigorously de- fined quantum chemical analysis of the chemical bond in donor–acceptor complexes
G Frenking (2003)
10.1021/OM00005A030
Oxidative Insertion as Frontside SN2 Substitution: Theoretical Investigation of the Model Reaction Systems Pd + CH₃C1.
F. Bickelhaupt (1995)
10.1002/1521-3757(20020415)114:8<1342::AID-ANGE1342>3.0.CO;2-A
N-Heterocyclische Carbene: ein neues Konzept in der metallorganischen Katalyse N-Heterocyclische Carbene, 31. Mitteilung. – 30. Mitteilung: Lit. [80]
W. A. Herrmann (2002)
10.1002/chem.200801833
The interplay between steric and electronic effects in S(N)2 reactions.
I. Fernández (2009)
10.1021/JA061842M
The Pb12(2-) and Pb10(2-) zintl ions and the M@Pb12(2-) and M@Pb10(2-) cluster series where M = Ni, Pd, Pt.
E. N. Esenturk (2006)
10.1002/chem.200900367
The steric nature of the bite angle.
Willem-Jan van Zeist (2009)
10.1021/JA0257164
Synthesis and Characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pri2): A Tin Analogue of an Alkyne
A. D. Phillips (2002)
10.1063/1.476742
Theoretical analysis of electronic delocalization
Y. Mo (1998)
synthesis, molecular structure, and quantum-chemical calculations
X H Me (2002)
Quantum chemical investigations of the phosphane complexes X 3 B-PY 3 and X 3 Al-PY 3
C Loschen (2002)
10.1063/1.1388040
Oxidative addition of Pd to C–H, C–C and C–Cl bonds: Importance of relativistic effects in DFT calculations
A. Diefenbach (2001)
10.1063/1.481185
Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach
Y. Mo (2000)
10.1021/OM0201056
Bis(benzene)chromium. 1. Franz Hein at the University of Leipzig and Harold Zeiss and Minoru Tsutsui at Yale
D. Seyferth (2002)
10.1515/znb-1955-1201
Di-benzol-chrom
E. O. Fischer (1955)
10.1021/JA01128A527
THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL
G. Wilkinson (1952)



This paper is referenced by
10.1021/ja4084495
Coinage-metal mediated ring opening of cis-1,2-dimethoxycyclopropane: trends from the gold, copper, and silver Fischer carbene bond strength.
Laurent Batiste (2014)
10.1063/1.4942921
Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.
Paul R. Horn (2016)
10.1002/EJOC.201701626
Understanding the Reactivity of Fullerenes Through the Activation Strain Model
I. Fernández (2018)
10.1007/s00214-019-2434-1
Chemical bonding in the hexamethylbenzene–SO2+ dication
Lisa Pecher (2019)
10.1039/c6cp01394e
How molecular is the chemisorptive bond?
R. V. van Santen (2016)
10.1039/c5cp05956a
How strong are the metallocene-metallocene interactions? Cases of ferrocene, ruthenocene, and osmocene.
Alba Vargas-Caamal (2016)
10.1007/s00894-012-1425-0
The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set
Wei Gao (2012)
10.1002/CPLU.201300169
Exploiting the Twofold Donor Ability of Carbodiphosphoranes: Theoretical Studies of [(PPh3 )2 C→EH2 ]q (Eq =Be, B+ , C2+ , N3+ , O4+ ) and Synthesis of the Dication [(Ph3 P)2 CCH2 ]2.
M. A. Çelik (2013)
10.1039/c5cs00004a
Aromaticity of metallabenzenes and related compounds.
I. Fernández (2015)
10.1039/c6dt00657d
A DFT study to unravel the ligand exchange kinetics and thermodynamics of Os(VIII) oxo/hydroxido/aqua complexes in aqueous matrices.
D. M. E. van Niekerk (2016)
10.1002/chem.201701506
Understanding the Reactivity of Ion-Encapsulated Fullerenes.
Yago García-Rodeja (2017)
10.1063/1.4999905
Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations.
Omar N. A. Demerdash (2017)
10.1038/s41570-018-0060-4
The Lewis electron-pair bonding model: modern energy decomposition analysis
L. Zhao (2019)
10.1007/s11224-012-0197-6
Quantitative analysis of intermolecular forces for hydrogen bond driven self-assembly of resorcinol and bis(pyridine) substituted ethylene cocrystals, before and after [2 + 2] dimerization
M. Zamani (2013)
10.1002/jcc.26423
Characterization of bonding modes in metal complexes through electron density cross-sections.
Shane de Beer (2020)
10.1021/acsomega.8b02243
Lewis Base Activation of Lewis Acid: A Detailed Bond Analysis
G. Ciancaleoni (2018)
10.1002/ANGE.201504863
μ‐PbSe: ein schweres CO‐Homolog als ungewöhnlicher Ligand
Guenther Thiele (2015)
10.1016/J.POLY.2016.02.022
Nature of the metal–ligand bond in some [(CO)4M ← BIIM(R)] {M = Cr, Mo, W; R = H, F, Cl, Br} complexes: A theoretical study
M. Bayat (2016)
10.1016/J.JORGANCHEM.2016.04.012
The nature of M-PNR2 bonds in the electrophilic phosphinidene complexes [(L)(CO)3M{PNR2}]+ (L = PMe3, PPh3; M = Co, Rh, Ir; R = Me, iPr): Structure, bonding and 31P NMR study
K. Pandey (2016)
10.1007/s00214-016-1993-7
Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes
S. Mondal (2016)
10.1039/c6cp06824c
The strongest CO binding and the highest C-O stretching frequency.
Ranajit Saha (2017)
10.1021/ACSCATAL.7B01152
Copper-Catalyzed Enantioselective Boron Conjugate Addition: DFT and AFIR Study on Different Selectivities of Cu(I) and Cu(II) Catalysts
Miho Isegawa (2017)
10.1039/c7cp07241d
The silane-methane dimer revisited: more than a dispersion-bound system?
J. Echeverría (2017)
10.1039/c8cc05230a
Revisiting complexation thermodynamics of transplutonium elements up to einsteinium.
Morgan P. Kelley (2018)
10.1002/ANGE.201311022
Dative Bindungen bei Hauptgruppenelementverbindungen: ein Plädoyer für mehr Pfeile
G. Frenking (2014)
10.1016/J.COMPTC.2014.09.012
An energy partition method based on localized molecular orbitals
E. Francisco (2015)
10.1039/C4RA12859A
[2.2.2]Paracyclophane, preference for η6 or η18 coordination mode including Ag(I) and Sn(II): a survey into the cation–π interaction nature through relativistic DFT calculations
Carolina Olea Ulloa (2015)
10.1039/c6cp02445a
The importance of dynamics studies on the design of sandwich structures: a CrB24 case.
Lei Liu (2016)
10.1039/c6cp08039a
Energy decomposition analysis in an adiabatic picture.
Y. Mao (2017)
10.1007/s00894-017-3235-x
Benchmark, DFT assessments, cooperativity, and energy decomposition analysis of the hydrogen bonds in HCN/HNC oligomeric complexes
P. C. D. Oliveira (2017)
10.1039/C7CY00322F
Theoretical and experimental studies on the structure–property relationship of chiral N,N′-dioxide–metal catalysts probed by the carbonyl–ene reaction of isatin
J. Wang (2017)
10.1016/J.CCR.2016.08.005
DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding
A. Tsipis (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar