Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Adaptable Hydrogel Networks With Reversible Linkages For Tissue Engineering.

H. Wang, S. Heilshorn
Published 2015 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-formation of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, an overview of adaptable-hydrogel design considerations and linkage selections is presented, with a focus on various cell-compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering.
This paper references
Biomacromolecules
M Nimmo (2011)
10.1039/c1cs15162b
Engineering DNA-based functional materials.
Y. H. Roh (2011)
10.1021/bm501313t
Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
Shifeng Yan (2014)
J. Chem. Soc
N F Curtis (1960)
Biomacromolecules
M Pawar (2012)
10.1002/bit.24355
Hydrogel design for supporting neurite outgrowth and promoting gene delivery to maximize neurite extension
Jaclyn A Shepard (2012)
Am. J. Physiol.: Gastrointest. Liver Physiol
G Lamprecht (2006)
10.1021/MA801202F
Formation of Physical Hydrogels via Host−Guest Interactions of β-Cyclodextrin Polymers and Copolymers Bearing Adamantyl Groups
Carsten Koopmans (2008)
Biomacromolecules
S Y Choh (2011)
Polymer
L C Lopergolo (2003)
10.1039/C3SM50803J
Dissipative interactions in cell–matrix adhesion
Christina Müller (2013)
10.1002/JBM.A.10319
Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage.
S. Bryant (2003)
10.1016/J.BIOMATERIALS.2005.03.012
Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
Shenshen Cai (2005)
J. Am. Chem. Soc
D C Wu (2010)
10.1002/anie.200906756
Bisaryl hydrazones as exchangeable biocompatible linkers.
A. Dirksen (2010)
10.1002/anie.201201040
Smart self-assembled hybrid hydrogel biomaterials.
J. Kopeček (2012)
Nat. Mater
E F Banwell (2009)
10.1038/nmeth.1218
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
K. Neuman (2008)
10.1371/journal.pone.0010514
Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers
G. Hettiarachchi (2010)
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.3.CO;2-X
Click Chemistry: Diverse Chemical Function from a Few Good Reactions.
H. Kolb (2001)
10.1039/C3TB20831A
Investigation of the Diels-Alder reaction as a cross-linking mechanism for degradable poly(ethylene glycol) based hydrogels.
S. Kirchhof (2013)
Adv. Mater
D B Kolesky (2014)
Acta Crystallogr ., Sect. D: Biol. Crystallogr
T Kajander (2007)
10.1073/pnas.0907995106
Vascular effects of a low-carbohydrate high-protein diet
S. Foo (2009)
10.1002/ADMA.200501612
Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology†
N. Peppas (2006)
10.1007/s10529-007-9465-8
Interactions of polysaccharide-based tissue adhesives with clinically relevant fibroblast and macrophage cell lines
S. K. Bhatia (2007)
10.1021/ja00312a108
Synthesis of aromatic Schiff base oligomers at the air/water interface
A. K. Engel (1985)
10.1039/C0SM00321B
Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production
K. Shroff (2010)
10.1167/iovs.08-2891
Rabbit study of an in situ forming hydrogel vitreous substitute.
K. Swindle-Reilly (2009)
Acta Biomater.Biomater
S Wust (2014)
10.1016/S0032-3861(03)00686-4
Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels
L. C. Lopergolo (2003)
10.1126/science.1168441
Mechanically Activated Integrin Switch Controls α5β1 Function
Julie C. Friedland (2009)
10.1021/BM0500042
Rheological characterization of polysaccharide-poly(ethylene glycol) star copolymer hydrogels.
Nori Yamaguchi (2005)
10.1002/adma.200902265
Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices.
Brian M. Gillette (2010)
J. Cell Biol
P F Lu (196)
10.1038/355033A0
Protein folding in the cell
Mary-Jane H. Gething (1992)
10.1038/356325A0
The molecular necklace: a rotaxane containing many threaded α-cyclodextrins
Akira Harada (1992)
10.1152/AJPGI.00135.2006
The emerging role of PDZ adapter proteins for regulation of intestinal ion transport.
G. Lamprecht (2006)
I. H. Panhuis , Biomater. Sci
C J Ferris (2013)
10.1021/BM0342032
Physical polymer matrices based on affinity interactions between peptides and polysaccharides.
Brandon L Seal (2003)
Proc. Natl. Acad. Sci. USA 2003
M P Lutolf
J. Biol. Chem
N J Skelton (2003)
10.1089/ten.tea.2008.0386
In vivo osteogenic differentiation of human adipose-derived stem cells in an injectable in situ-forming gel scaffold.
Hyun Hee Ahn (2009)
10.1038/370126A0
Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol)
Akira Harada (1994)
10.1002/ADFM.201201698
Smart Design of Stable Extracellular Matrix Mimetic Hydrogel: Synthesis, Characterization, and In Vitro and In Vivo Evaluation for Tissue Engineering
Oommen P. Oommen (2013)
10.1016/S0032-3861(97)01024-0
Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques
Costas J. Boutris (1997)
10.1002/pro.5560030516
Macromolecules
C. Tanford (1948)
J. Cell. Biol
F Sabeh (2009)
10.1016/J.ADDR.2007.03.013
Injectable matrices and scaffolds for drug delivery in tissue engineering.
J. Kretlow (2007)
J. Am. Chem. Soc
F H Beijer (1998)
10.1038/nmat2441
Complexity in biomaterials for tissue engineering.
Elsie S. Place (2009)
10.1136/bmj.1.4959.155-a
Biochemistry
F. G. Young (1955)
Chem. Commun
M B Smeets (2014)
J. Am. Chem. Soc
N Yamaguchi (2007)
10.1021/bm401123m
3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells.
Hyuntae Jung (2014)
10.1039/b713009k
Injectable hydrogels as unique biomedical materials.
Lin Yu (2008)
10.1002/marc.201300494
Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions.
Zhao Wei (2013)
Chem. Soc. Rev
R B Grubbs (2013)
Biotechnol. Bioeng
M W Tibbitt (2009)
10.1002/anie.201104069
Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature.
K. Imato (2012)
Adv. Mater
B J Adzima (2010)
J. Cell Biol
H Ostergaard (2004)
Biomacromolecules
C B Rodell (2013)
10.1016/j.biomaterials.2009.01.056
Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system.
Chu-Ya Yang (2009)
Biomacromolecules
N Yamaguchi (1931)
Chem. Soc. Rev
E A Appel (2012)
Curr. Opin. Struct. Biol
M G Oakley (2001)
10.1021/JA064546I
A genetic toolbox for creating reversible Ca2+-sensitive materials.
S. Topp (2006)
Biopolymers
T Z Grove (2012)
Nat. Struct. Biol
V Kanelis (2001)
Adv. Funct. Mater
M J Glassman (1182)
J. Mater. Chem. B
M J Rowland (2013)
J. Biol. Chem
D Diviani (2001)
PloS One
G Hettiarachchi (2010)
10.1002/JBM.A.30603
Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation.
L. Novikova (2006)
10.1039/C3SM00102D
Structure and Mechanical Response of Protein Hydrogels Reinforced by Block Copolymer Self-Assembly.
M. Glassman (2013)
10.1016/S0968-0004(96)10052-9
Coiled coils: new structures and new functions.
A. Lupas (1996)
10.1016/j.biomaterials.2014.03.026
Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties.
A. Fathi (2014)
10.1016/J.PROGPOLYMSCI.2013.09.006
Complex macromolecular architecture design via cyclodextrin host/guest complexes
B. V. Schmidt (2014)
10.1006/JMBI.1996.0229
Alanine substitutions in calmodulin-binding peptides result in unexpected affinity enhancement.
S. Montigiani (1996)
10.1038/77929
Structural basis for phosphoserine-proline recognition by group IV WW domains
M. Verdecia (2000)
10.1016/j.biomaterials.2008.12.080
Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering.
H. Tan (2009)
Biomacromolecules
B L Seal (1572)
10.1002/adma.201306258
Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions.
K. K. Öhlenschläger (2014)
Drug Delivery Rev
A S Hoffman
10.1126/science.1207598
The Complex Folding Network of Single Calmodulin Molecules
Johannes Stigler (2011)
J. Cell Biol
C L Zhong (1998)
10.1038/nrn1517
PDZ domain proteins of synapses
E. Kim (2004)
10.1002/adhm.201200293
Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells.
A. Parisi-Amon (2013)
10.1021/MA00128A060
Preparation and Characterization of Inclusion Complexes of Poly(Propylene Glycol) with Cyclodextrins
Akira Harada (1995)
Chem. Commun
L H He (2011)
10.1016/j.actbio.2013.01.026
Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density.
K. A. Kyburz (2013)
10.1016/S0165-0270(01)00412-5
A new approach to neural cell culture for long-term studies
Steve M. Potter (2001)
Angew. Chem. Int. Ed
E J Cheng (2009)
Angew. Chem. Int. Ed
H C Kolb (2001)
Clin. Cancer Res
C H Chang (2007)
Adv. Funct. Mater
L Cai (1344)
10.1016/J.PROGPOLYMSCI.2007.05.013
Silk as a Biomaterial.
Charu Vepari (2007)
J. Biomed. Mater. Res. A
L N Novikova (2006)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1002/MARC.1997.030180701
Complex formation of poly(ε-caprolactone) with cyclodextrin
Akira Harada (1997)
10.1039/c1cs15203c
Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications.
Yulin Li (2012)
10.4135/9781412952644.n56
“Bioinformatics” 특집을 내면서
장병탁 (2000)
J. Am. Chem. Soc
T Z Grove (2010)
Chem. Mater
D D Mckinnon (2014)
Biomacromolecules
S Yan (2014)
10.1039/c3cc43711f
Multifunctional biohybrid hydrogels for cell culture and controlled drug release.
Huaimin Wang (2013)
10.1021/bm800051m
Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.
S. Sahoo (2008)
Biomacromolecules
M Patenaude (2012)
10.1002/cphc.200700625
Sol-gel-sol transition of gold nanoparticle-based supramolecular hydrogels induced by cyclodextrin inclusion.
B. Jing (2008)
10.1089/107632703764664846
Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance.
S. Ibusuki (2003)
10.1016/J.JCONREL.2007.04.019
Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems.
T. Nie (2007)
10.1016/S0142-9612(98)00025-8
Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels.
G. Cruise (1998)
Chem. Soc. Rev
M Kharkar (2013)
10.1039/B211645F
Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry.
R. Nguyen (2003)
10.1016/j.actbio.2013.10.016
Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.
S. Wüst (2014)
10.1021/JA0680358
Growth factor mediated assembly of cell receptor-responsive hydrogels.
Nori Yamaguchi (2007)
10.1038/nature01605
Direct observation of catch bonds involving cell-adhesion molecules
B. Marshall (2003)
10.1073/pnas.0737381100
Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics
M. Lutolf (2003)
Chem. Commun
H P Tan (2012)
Adv. Mater
H Nandivada (2007)
Nat. Mater
S Khetan (2013)
10.1007/s00894-010-0725-5
A physical model for PDZ-domain/peptide interactions
Kristian Kaufmann (2011)
10.1093/oso/9780195082371.001.0001
Structures and properties of rubberlike networks
B. Erman (1997)
10.1016/j.biomaterials.2009.09.026
Reversible hydrogel formation driven by protein-peptide-specific interaction and chondrocyte entrapment.
Fuyu Ito (2010)
10.1016/j.cell.2006.06.044
Matrix Elasticity Directs Stem Cell Lineage Specification
A. Engler (2006)
Angew. Chem. Int. Ed
K Imato (1138)
10.1038/NMAT1573
Tuning the erosion rate of artificial protein hydrogels through control of network topology
W. Shen (2006)
J. Neurosci. Methods
S M Potter (2001)
10.1002/ADFM.201202034
Reinforcement of Shear Thinning Protein Hydrogels by Responsive Block Copolymer Self-Assembly.
M. Glassman (2013)
Tissue Eng
S Ibusuki (2003)
Biophys. J
M Murrell (2011)
10.1002/9783527623372
Soft Matter
A. Mishra (2015)
10.1021/bm500186a
A repertoire of peptide tags for controlled drug release from injectable noncovalent hydrogel.
Robert Wieduwild (2014)
10.1016/S0014-5793(01)03290-2
WW and SH3 domains, two different scaffolds to recognize proline‐rich ligands
M. Macias (2002)
10.1016/j.ejps.2009.01.010
Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release.
Z. Wu (2009)
10.1016/j.jmb.2008.09.034
Structural basis of beta-catenin recognition by Tax-interacting protein-1.
J. Zhang (2008)
10.1021/bm301242v
Injectable hydrogels from segmented PEG-bisurea copolymers.
Gajanan M. Pawar (2012)
10.1039/c3cs60080g
Characterization of supramolecular gels.
Guocan Yu (2013)
10.1126/SCIENCE.1110505
Photoinduced Plasticity in Cross-Linked Polymers
T. F. Scott (2005)
Thromb. Haemostasis
E A Silva (2007)
10.1038/nmat2473
Sequential Click Reactions for Synthesizing and Patterning 3D Cell Microenvironments
C. DeForest (2009)
Angew. Chem. Int. Ed
J Kalia (2008)
10.1039/c3cc48514e
Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate).
Niels M. B. Smeets (2014)
10.1039/C1SM06513K
Shear-thinning hydrogels for biomedical applications
M. Guvendiren (2012)
10.1016/j.jsb.2008.01.016
Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.
D. Parry (2008)
10.1002/pro.75
Redesign of a protein–peptide interaction: Characterization and applications
Meredith E Jackrel (2009)
Nat. Mater
S Place (2009)
J. Biol. Chem
T Yuan (1998)
Polym. J
J Li (1019)
10.1039/c3cs60044k
Recent advances in dynamic covalent chemistry.
Y. Jin (2013)
10.1039/c3cs60079c
Shape-changing polymer assemblies.
R. B. Grubbs (2013)
Annu. Rev. Biophys. Biomol. Struct
A Crivici (1995)
10.1016/J.BIOMATERIALS.2006.03.025
Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery.
J. Li (2006)
10.1021/MA0524528
Viscoelastic Behavior of Environmentally Sensitive Biomimetic Polymer Matrices
Brandon L Seal (2006)
10.1158/1078-0432.CCR-07-1217
The Dock and Lock Method: A Novel Platform Technology for Building Multivalent, Multifunctional Structures of Defined Composition with Retained Bioactivity
Chien-Hsing Chang (2007)
J. Am. Chem. Soc
S E Dong (2007)
10.1016/j.biomaterials.2011.01.064
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Sarah E B Anderson (2011)
10.1039/C3TB20180E
Dynamically crosslinked materials via recognition of amino acids by cucurbit[8]uril.
M. Rowland (2013)
10.1529/BIOPHYSJ.106.101261
Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM.
A. Brown (2007)
10.1016/S0969-2126(98)00065-3
Solution structure of the heparin-binding domain of vascular endothelial growth factor.
W. Fairbrother (1998)
Nat. Mater. REVIEW Adv. Mater
S Keten (2015)
10.1002/bip.22033
A modular approach to the design of protein‐based smart gels
Tijana Z Grove (2012)
10.1021/bm401280z
Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels.
Christopher B Rodell (2013)
Angew. Chem. Int. Ed
X L Zhang (2012)
Chem. Soc. Rev
S Seiffert (2012)
PloS One
J Y Wang (2013)
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
Dynamic covalent chemistry.
S. Rowan (2002)
10.1074/JBC.M106629200
AKAP-Lbc Anchors Protein Kinase A and Nucleates Gα12-selective Rho-mediated Stress Fiber Formation*
D. Diviani (2001)
10.1002/anie.200902538
A pH-triggered, fast-responding DNA hydrogel.
E. Cheng (2009)
Macromol. Rapid Commun
A Harada (1997)
10.1016/j.biomaterials.2012.02.030
Sustained release of proteins from high water content supramolecular polymer hydrogels.
Eric A. Appel (2012)
10.1002/adma.201303680
Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems.
D. McKinnon (2014)
10.1021/CM5007789
Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies
D. McKinnon (2014)
10.1021/bm301346e
Biocompatible hydrogels by oxime Click chemistry.
G. Grover (2012)
10.1039/c1cs15191f
Physical chemistry of supramolecular polymer networks.
S. Seiffert (2012)
Nat. Biotechnol
S Rodin (2010)
10.1016/J.JMB.2004.08.012
Systematic delineation of a calmodulin peptide interaction.
C. Hultschig (2004)
10.1021/ja809475a
Multi-stimuli sensitive amphiphilic block copolymer assemblies.
Akamol Klaikherd (2009)
Org. Biomol. Chem
V D Uzunova (2010)
10.1038/nature03990
Natural-like function in artificial WW domains
W. Russ (2005)
Nat. Commun
C Lv (2014)
J. Am. Chem. Soc
J P Schneider (2002)
Macromol. Rapid Commun
M Patenaude (2014)
10.1038/nmat2704
Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
S. Keten (2010)
10.1016/j.biomaterials.2013.09.078
The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.
T. Billiet (2014)
Nat. Struct. Biol
M Vandonselaar (1994)
10.1126/science.1169494
Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties
April M Kloxin (2009)
10.1063/1.2914118
Scaling Concepts in Polymer Physics
Pierre-Gilles de Gennes (1979)
10.1039/C2PY20627G
Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier
B. Yang (2012)
10.1021/MA048472B
Kinetics of Demixing and Remixing in Poly(N-isopropylacrylamide)/Water Studied by Modulated Temperature DSC
K. V. Durme (2004)
10.1021/MA101434A
Yielding Behavior in Injectable Hydrogels from Telechelic Proteins.
B. Olsen (2010)
10.1002/anie.201108612
Rational design of a tetrameric protein to enhance interactions between self-assembled fibers gives molecular hydrogels.
X. Zhang (2012)
Adv. Mater
J J Zhang (2011)
10.1021/ma200202w
Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction
B. Fairbanks (2011)
10.1146/ANNUREV.NEURO.24.1.1
PDZ domains and the organization of supramolecular complexes.
M. Sheng (2001)
Angew. Chem. Int. Ed
A Dirksen (2010)
Chem. Soc. Rev
G C Yu (2013)
10.1146/annurev.biophys.37.032807.125804
Biophysics of catch bonds.
W. Thomas (2008)
10.1016/j.actbio.2010.11.002
PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries.
Yongzhi Qiu (2011)
Nat. Struct. Biol
M J Macias (2000)
10.1016/S0065-3233(05)70004-8
The design of coiled-coil structures and assemblies.
D. N. Woolfson (2005)
10.1039/C1SM05209H
Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks
Julie I. Jay (2011)
J. Mol. Biol
R Chattopadhyaya (1177)
Biomacromolecules
K J Jeong (1090)
10.1002/adma.201200051
Multifunctional materials through modular protein engineering.
Rebecca L DiMarco (2012)
Macromol. Biosci
H Park (2009)
10.1021/MA062669H
Bundling Two Polymeric Chains with γ-Cyclodextrin Cavity Contributing to Supramolecular Network Formation
Ryouji Kawabata (2007)
10.1002/ADFM.201403631
Injectable Hydrogels with In Situ Double Network Formation Enhance Retention of Transplanted Stem Cells.
L. Cai (2015)
Adv. Protein Chem
D N Woolfson (2005)
10.1021/bm101451k
Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation.
Sun-Young Choh (2011)
J. Am. Chem. Soc
A Klaikherd (2009)
Proc. Natl. Acad. Sci. USA 2007
L Haines-Butterick
10.1016/j.biomaterials.2008.09.041
Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
Yun-xiao Liu (2009)
Chem. Commun
J X Cui (2012)
Cold Spring Harbor Perspect
P F Lu (2011)
10.1038/nmat3586
Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels
Sudhir Khetan (2013)
Annu. Rev. Neurosci
M Sheng (2001)
J. Mol. Biol
K L Yap (193)
10.1089/TEN.2006.12.1663
Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation.
D. Benoit (2006)
10.1038/87562
Solution structure of a Nedd4 WW domain–ENaC peptide complex
V. Kanelis (2001)
10.1038/nmat2419
A cell-free protein-producing gel.
Nokyoung Park (2009)
J. Am. Chem. Soc
M Y Guo (2014)
10.1039/B100916H
Heparin and heparan sulfate: structure and function.
D. Rabenstein (2002)
10.1016/j.biomaterials.2008.06.025
Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran.
Lihui Weng (2008)
10.1016/S0142-9612(98)00107-0
Alginate hydrogels as synthetic extracellular matrix materials.
J. Rowley (1999)
Nat. Commun
O Chaudhuri (2015)
Chem. Commun
R Nguyen (2003)
Macromol. Rapid Commun
Z Wei (1464)
Biomacromolecules
G N Grover (2012)
10.1021/cr5006342
Photoresponsive Host-Guest Functional Systems.
D. Qu (2015)
10.1083/JCB.141.2.539
Rho-mediated Contractility Exposes a Cryptic Site in Fibronectin and Induces Fibronectin Matrix Assembly
C. Zhong (1998)
Mol. Cell
M G Gold (2006)
10.1038/nature10316
Dynamic molecular processes mediate cellular mechanotransduction
B. D. Hoffman (2011)
10.1016/j.actbio.2013.12.028
Designing ECM-mimetic materials using protein engineering.
L. Cai (2014)
10.1016/j.biomaterials.2013.11.023
The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells.
A. Cameron (2014)
J. Biol. Chem
R C Venema (1996)
Nat. Rev. Neurosci
E J Kim (2004)
10.1146/ANNUREV.BB.24.060195.000505
Molecular and structural basis of target recognition by calmodulin.
A. Crivici (1995)
10.1039/c4sm01365d
Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sm01365d Click here for additional data file.
D. McKinnon (2014)
10.1021/JA069150L
Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation.
Jung Kwon Oh (2007)
10.1038/6663
The molecular basis for protein kinase A anchoring revealed by solution NMR
M. Newlon (1999)
Adv. Mater
R L Dimarco (2012)
Polym. Chem
B Yang
Biomacromolecules
R Wieduwild (2014)
Macromol. Rapid Commun
S H Kim (1231)
J. Controlled Release
W Mulyasasmita (2014)
10.1002/mabi.201100119
In situ forming physical hydrogels for three-dimensional tissue morphogenesis.
Y. Liu (2011)
10.1007/s10059-009-0091-2
A machine learning based method for the prediction of G protein-coupled receptor-binding PDZ domain proteins
Hae-Seok Eo (2009)
Adv. Mater
M C Roberts (2007)
10.1074/jbc.M209751200
Origins of PDZ Domain Ligand Specificity
N. Skelton (2003)
10.1016/j.carbpol.2012.03.083
A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation.
Dian-Yu Ji (2012)
ACS Chem. Biol
A L Cortajarena (2010)
10.1021/bm801270k
Interplay between covalent and physical interactions within environment sensitive hydrogels.
K. J. Jeong (2009)
10.1016/j.jconrel.2014.05.015
Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors.
W. Mulyasasmita (2014)
ChemPhysChem
B Jing (2008)
10.1107/S0907444907024353
Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
T. Kajander (2007)
Adv. Funct. Mater
F Van De Manakker (2009)
10.1038/nbt1055
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
M. Lutolf (2005)
10.1038/nbt.2958
3D bioprinting of tissues and organs
S. Murphy (2014)
Biophys. J
A E Brown (2007)
10.1021/MA702607R
Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes
F. V. D. Manakker (2008)
10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H
Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries
J. Lehn (1999)
J. Biol. Chem
S Y M Lau (1984)
10.1016/S0022-2836(03)00271-7
Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin.
K. Yap (2003)
Adv. Mater
D D Mckinnon (2014)
Protein Sci
M E Jackrei (2009)
Carbohydr. Polym
D Y Ji (1123)
J. Mol. Biol
A L Cortajarena (2008)
10.1002/FOOD.19810250714
M. L. Bender und M. Komiyama: Cyclodextrin Chemistry. 96 Seiten, 14 Abb., 37 Tab. Springer‐Verlag, Berlin, Heidelberg, New York 1978. Preis: 44,— DM
S. Augustat (1981)
Biomed. Mater. Res. A
S J Bryant (2003)
10.1021/ja3044568
Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness.
Eric A. Appel (2012)
J. Mol. Biol
J X Zhang (2008)
Acta Biomater
S C Cai
10.1021/IE901178Q
Polymeric Networks Assembled by Adamantyl and β-Cyclodextrin Substituted Poly(acrylate)s: Host−Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution
J. Wang (2010)
Biochim. Biophys. Acta: Gene Struct. Expression
K B Foss (1350)
10.1002/anie.200802651
Hydrolytic stability of hydrazones and oximes.
J. Kalia (2008)
10.1016/J.JCONREL.2007.05.009
Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.
Y. Cao (2007)
Biotechnol . Lett
S K Bhatia (1645)
10.1016/S0014-5793(03)01402-9
Structural implications for heavy metal‐induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA 1
Y. Tanaka (2004)
10.1021/bm400814u
Two-component protein hydrogels assembled using an engineered disulfide-forming protein-ligand pair.
Dongli Guan (2013)
J. Mol. Biol
C Hultschig (2004)
10.1002/adhm.201200343
Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels.
H. Lu (2013)
10.1016/j.biomaterials.2012.10.008
Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering.
J. Dahlmann (2013)
10.1073/pnas.0904851106
Two-component protein-engineered physical hydrogels for cell encapsulation
C. Wong Po Foo (2009)
10.1038/417424a
Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles
A. Nowak (2002)
Chem. Soc. Rev
Y H Roh (2011)
10.1016/j.jmb.2009.07.060
Molecular mechanism of inward rectifier potassium channel 2.3 regulation by tax-interacting protein-1.
Xiaojie Yan (2009)
10.1021/bm101446k
Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering.
Chelsea M Nimmo (2011)
10.1074/jbc.M306324200
The PDZ Protein Tax-interacting Protein-1 Inhibits β-Catenin Transcriptional Activity and Growth of Colorectal Cancer Cells*
M. Kanamori (2003)
Adv. Mater
G N Grover (2013)
10.1002/adma.201305506
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.
David B. Kolesky (2014)
J. Biol. Chem
M Matsubara (1997)
Biotechnol. Bioeng
J A Shepard (2012)
J. Controlled Release
Y X Cao (2007)
10.1039/C4TB00315B
Mechanically strong and stretchable PEG-based supramolecular hydrogel with water-responsive shape-memory property.
Yulin Cui (2014)
10.1016/j.biomaterials.2008.05.033
Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy.
Y. Hori (2008)
10.1021/bm2013982
Injectable, mixed natural-synthetic polymer hydrogels with modular properties.
M. Patenaude (2012)
10.1126/SCIENCE.286.5446.1882
Setting the standards: quality control in the secretory pathway.
L. Ellgaard (1999)
10.1038/nmat2479
Rational design and application of responsive α-helical peptide hydrogels
Eleanor F. Banwell (2009)
Macromol. Biosci
Y Liu (1325)
10.1126/SCIENCE.281.5375.389
Reversible hydrogels from self-assembling artificial proteins.
W. A. Petka (1998)
10.1002/adhm.201400304
Supramolecular hydrogels for long-term bioengineered stem cell therapy.
Junseok Yeom (2015)
10.1021/ja507626y
Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release.
M. Gupta (2014)
Nat. Mater
N Huebsch (2010)
10.1083/JCB.200402120
Monitoring disulfide bond formation in the eukaryotic cytosol
H. Østergaard (2004)
J. Am. Chem. Soc
M K Gupta (2014)
10.1002/ADMA.200700433
Monodisperse alginate hydrogel microbeads for cell encapsulation
Wei-heong Tan (2007)
10.1016/J.MOLCEL.2006.09.006
Molecular basis of AKAP specificity for PKA regulatory subunits.
M. Gold (2006)
10.1016/j.biomaterials.2014.03.045
In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel.
Jin Seon Kwon (2014)
Biomacromolecules
S Sahoo (1088)
10.1016/0092-8674(93)90586-F
Cell
AC Tose (1993)
10.1016/j.bbagen.2010.07.005
Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.
Nicole H Romano (2011)
J. Am. Chem. Soc
J Kim (2000)
10.1038/NSB1194-795
Trifluoperazine-induced conformational change in Ca2+-calmodulin
M. Vandonselaar (1994)
10.1039/JR9600004409
855. Transition-metal complexes with aliphatic Schiff bases. Part I. Nickel(II) complexes with N-isopropylidene-ethylenediamine schiff bases
N. F. Curtis (1960)
10.1021/bm500874t
Engineering complementary hydrophobic interactions to control β-hairpin peptide self-assembly, network branching, and hydrogel properties.
S. Sathaye (2014)
Nat. Mater
W Shen (2006)
Annu. Rev. Biophys
W E Thomas (2008)
10.1016/j.biomaterials.2014.08.001
The control of cargo release from physically crosslinked hydrogels by crosslink dynamics.
Eric A. Appel (2014)
10.1038/nature03991
Evolutionary information for specifying a protein fold
M. Socolich (2005)
J. Biol. Chem
M Kanamori (2003)
AI- 116484, and California Institute for Regenerative Medicine
Od (2015)
Tissue Eng., Part A
W Mulyasasmita (2014)
10.1016/j.biomaterials.2013.02.020
A Diels-Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells.
K. C. Koehler (2013)
10.1021/nn204123p
In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering.
K. Park (2012)
Adv. Mater
N A Peppas (1345)
10.1002/marc.201000130
Cell-mediated Delivery and Targeted Erosion of Vascular Endothelial Growth Factor-Crosslinked Hydrogels.
S. H. Kim (2010)
Nat. Mater
C A Deforest (2009)
Chem. Commun
Y L Zhang (2012)
10.1016/J.BIOMATERIALS.2007.08.007
The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
J. Kutty (2007)
10.1038/nbt.1489
Predicting PDZ domain–peptide interactions from primary sequences
Jiunn R Chen (2008)
J. Am. Chem. Soc
A Dirksen (2006)
10.1021/ja407407h
Fast hydrazone reactants: electronic and acid/base effects strongly influence rate at biological pH.
E. Kool (2013)
J. Am. Chem. Soc
S Topp (2006)
Polymer
C Boutris (1997)
Acta Biomater
H Cui (2015)
10.1073/pnas.0701980104
Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
Lisa A Haines-Butterick (2007)
10.1038/nature11409
Highly stretchable and tough hydrogels
Jeong-Yun Sun (2012)
J. Am. Chem. Soc
M Ramirez (2013)
Angew. Chem
S J Rowan (2002)
J. Struct. Biol
D A D Parry (2008)
10.1038/nbt.1620
Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511
S. Rodin (2010)
10.1016/j.addr.2008.02.011
Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
J. Li (2008)
10.1038/nmat2269
Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells.
D. Benoit (2008)
J. Controlled Release
H Park (196)
10.1021/JA027993G
Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
J. Schneider (2002)
10.1038/nmat3922
Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition
B. P. Purcell (2014)
10.1039/c2cc34701f
Multivalent H-bonds for self-healing hydrogels.
J. Cui (2012)
10.1002/adma.201205234
Oxime cross-linked injectable hydrogels for catheter delivery.
G. Grover (2013)
10.1093/protein/gzq015
Creating novel proteins by combining design and selection.
Tijana Z Grove (2010)
Bichim. Biophys. Acta Gen. Subj
N H Romano (339)
10.1021/cb9002464
Designed proteins to modulate cellular networks.
A. Cortajarena (2010)
Acta Biomater
Y Liang (1588)
Chem. Soc. Rev
Y H Jin (2013)
Mol. Cells
H S Eo (2009)
10.1016/S0169-409X(97)90003-X
Adv. Drug Delivery Rev.
F. Welt (1997)
10.1074/jbc.273.46.30328
Calcium-Calmodulin-induced Dimerization of the Carboxyl-terminal Domain from Petunia Glutamate Decarboxylase
T. Yuan (1998)
10.1089/ten.tea.2013.0357
Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels.
W. Mulyasasmita (2014)
Trends Biotechnol
G Chan (2008)
J. Mater. Chem. B 2013
S Kirchhof
J. Am. Chem. Soc
M Galler (2010)
Biomacromolecules
K C Koehler (2013)
10.1111/j.1538-7836.2007.02386.x
Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis
E. A. Silva (2007)
10.1021/BI00027A013
A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil.
K. Lumb (1995)
10.1002/marc.201300818
Designing injectable, covalently cross-linked hydrogels for biomedical applications.
M. Patenaude (2014)
10.1021/MA048348S
Assembly of an artificial protein hydrogel through leucine zipper aggregation and disulfide bond formation
W. Shen (2005)
10.1039/C2BM00114D
Bio-ink for on-demand printing of living cells.
C. Ferris (2013)
10.1006/JMBI.2000.5199
Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope.
J. R. Pirés (2001)
10.1039/C2CC35449G
Biological self-assembly of injectable hydrogel as cell scaffold via specific nucleobase pairing.
H. Tan (2012)
Chem. Commun
H M Wang (2013)
Chem. Eur. J
J M Lehn (1999)
Acta Biomater.Biomater
Y Z Qiu (2011)
Adv. Mater
J Brandt (2014)
Nat. Commun
H Z Ying (2014)
10.1295/POLYMJ.26.1019
Sol–Gel Transition during Inclusion Complex Formation between α-Cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution
J. Li (1994)
10.1016/j.biomaterials.2010.02.069
Modularly assembled porous cell-laden hydrogels.
B. Liu (2010)
10.1016/j.biomaterials.2011.11.076
Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism.
H. Lu (2012)
10.1039/c2cs35264h
Supramolecular polymeric hydrogels.
E. Appel (2012)
10.1039/b925555a
Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study.
Vanya D. Uzunova (2010)
10.1073/pnas.0330734100
Bioinformatic design of A-kinase anchoring protein-in silico: A potent and selective peptide antagonist of type II protein kinase A anchoring
N. Alto (2003)
Adv. Funct. Mater
O P Oommen (1273)
10.1039/c2cc34745h
A magnetic self-healing hydrogel.
Yaling Zhang (2012)
Trends Biochem. Sci
A Lupas (1996)
10.1063/1.3060678
The physics of rubber elasticity
L. R. G. Treloar (1949)
J. Am. Chem. Soc
E A Appel (2012)
10.1021/MA010768J
Dynamic Structure of a Protein Hydrogel: A Solid-State NMR Study
S. B. Kennedy (2001)
10.1016/j.str.2010.08.007
Transient protein-protein interactions: structural, functional, and network properties.
J. Perkins (2010)
10.1038/ncomms7365
Substrate stress relaxation regulates cell spreading.
Ovijit Chaudhuri (2015)
Nat. Struct. Biol
M G Newlon (1999)
10.1021/JA000435M
Stability and Lifetime of Quadruply Hydrogen Bonded 2-Ureido-4[1H]-pyrimidinone Dimers
Serge H. M. Söntjens (2000)
10.1038/ncomms4218
Dynamic urea bond for the design of reversible and self-healing polymers
Hanze Ying (2014)
Protein Eng., Des. Sel
T Z Grove (2010)
Adv. Mater
M Kloxin (2010)
J. Am. Chem. Soc
W Zheng (2012)
10.1016/j.biomaterials.2011.02.019
The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β.
Jennifer S. Park (2011)
Nat. Methods
K C Neuman (2008)
10.1038/nature02262
Quality control in the endoplasmic reticulum protein factory
R. Sitia (2003)
10.1002/bit.22361
Hydrogels as extracellular matrix mimics for 3D cell culture.
Mark W. Tibbitt (2009)
DOI: 10.1002/adma
(2015)
10.1093/bioinformatics/btq657
A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain–peptide interaction from primary sequence
Xiaojian Shao (2011)
10.1016/j.biomaterials.2008.03.016
Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel.
Thomas P. Kraehenbuehl (2008)
10.1021/ja2113257
A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism.
P. Zheng (2012)
10.1016/0022-2836(92)90324-D
Calmodulin structure refined at 1.7 A resolution.
R. Chattopadhyaya (1992)
Nat. Prod. Rep
D L Rabenstein (2002)
10.1016/J.BIOMATERIALS.2003.10.045
Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
H. Awad (2004)
Nat. Mater
S H Um (2006)
10.1016/j.bpj.2011.05.048
Substrate viscosity enhances correlation in epithelial sheet movement.
Michael Murrell (2011)
J. Mol. Biol
X J Yan (2009)
J. Am. Chem. Soc
A K Engel (1985)
10.1021/ja1069932
Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform.
Ja-Hyoung Ryu (2010)
10.1021/ja106619w
Stimuli-responsive smart gels realized via modular protein design.
Tijana Z Grove (2010)
Pompe
C. Muller (2013)
Biomacromolecules
H Jung (2014)
Biomacromolecules
S Sathaye (2014)
10.1002/ADMA.200602649
Dynamically Restructuring Hydrogel Networks Formed with Reversible Covalent Crosslinks
Meredith C. Roberts (2007)
10.1126/SCIENCE.2503872
Preferential heterodimer formation by isolated leucine zippers from fos and jun.
E. K. O’Shea (1989)
10.1021/MA048375I
Controlling PVA Hydrogels with γ-Cyclodextrin
R. Hernández (2004)
10.1021/la2041746
Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload.
Congqi Yan (2012)
J. Am. Chem. Soc
N Dave (2010)
Angew. Chem
J Kopecek
Prud'homme
J Wang (2010)
Biomacromolecules
L Aulisa (2009)
J. Mol. Biol
J R Pires (1147)
J. Controlled Release
T Nie (2007)
10.1038/NMAT1741
Enzyme-catalysed assembly of DNA hydrogel
S. H. Um (2006)
10.1021/ja106639c
'Living' controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels.
D. Wu (2010)
Acc. Chem. Res
A Harada (2014)
10.1021/JA993376P
New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8)
Jaheon Kim (2000)
10.1021/ja106098j
Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water.
N. Dave (2010)
10.1021/JA072536R
Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
He Dong (2007)
Biophys. J
W Thomas (2006)
10.1016/j.jmb.2008.07.005
Non-random-coil behavior as a consequence of extensive PPII structure in the denatured state.
A. Cortajarena (2008)
J. Am. Chem. Soc
J K Oh (2007)
Eur. J. Pharm. Sci
M Wu (198)
10.1016/j.febslet.2006.06.084
Hyper‐thermostability of CutA1 protein, with a denaturation temperature of nearly 150 °C
T. Tanaka (2006)
J. Am. Chem. Soc
E T Kool (2013)
Nat. Biotechnol
M P Lutolf (2005)
10.1002/ADMA.200602739
Click Chemistry: Versatility and Control in the Hands of Materials Scientists
H. Nandivada (2007)
10.1529/BIOPHYSJ.105.066548
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
W. Thomas (2006)
10.1021/bm301789d
Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel.
K. C. Koehler (2013)
10.1038/nmat2732
Harnessing Traction-Mediated Manipulation of the Cell-Matrix Interface to Control Stem Cell Fate
Nathaniel Huebsch (2010)
10.1074/JBC.271.11.6435
Identification, Characterization, and Comparison of the Calmodulin-binding Domains of the Endothelial and Inducible Nitric Oxide Synthases (*)
R. C. Venema (1996)
10.1074/jbc.272.37.23050
Circular Dichroism and 1H NMR Studies on the Structures of Peptides Derived from the Calmodulin-binding Domains of Inducible and Endothelial Nitric-oxide Synthase in Solution and in Complex with Calmodulin
M. Matsubara (1997)
Chem. Rev
L Brunsveld (2001)
10.1021/MA0210675
New Thermally Remendable Highly Cross-Linked Polymeric Materials
X. Chen (2003)
10.1038/ncomms5623
Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin
Chunmei Lv (2014)
Prog. Polym. Sci
B V K J Schmidt (2014)
Nat. Mater
N Park (2009)
Nat. Mater
D S Benoit (2008)
Biomacromolecules
A Fernandez-Colino (2014)
10.1039/c3cs60040h
Designing degradable hydrogels for orthogonal control of cell microenvironments
Prathamesh M Kharkar (2013)
J. Mol. Model
K Kaufmann (2011)
10.1083/jcb.201102147
The extracellular matrix: A dynamic niche in cancer progression
Pengfei Lu (2012)
10.1016/j.tibtech.2008.03.011
New materials for tissue engineering: towards greater control over the biological response.
G. Chan (2008)
10.1021/bm501051t
Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process.
A. Fernández-Colino (2014)
10.1002/adma.201103349
Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation.
J. Zhang (2011)
10.1021/JA974112A
STRONG DIMERIZATION OF UREIDOPYRIMIDONES VIA QUADRUPLE HYDROGEN BONDING
F. H. Beijer (1998)
10.1103/physreve.82.061906
Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals.
Z. Qin (2010)
10.1101/cshperspect.a005058
Extracellular matrix degradation and remodeling in development and disease.
Pengfei Lu (2011)
10.1179/174328408x369933
Biomaterials
R. Misra (2008)
10.1038/75144
Structural analysis of WW domains and design of a WW prototype
M. Macias (2000)
10.1021/ar500109h
Supramolecular polymeric materials via cyclodextrin-guest interactions.
A. Harada (2014)
10.1002/adma.200904138
Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating.
Brian J. Adzima (2010)
Nat. Mater
B P Purcell (2014)
J. Am. Chem. Soc
S H M Sontjens (2000)
10.1083/jcb.200807195
Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited
F. Sabeh (2009)
J. Mol. Biol
C A Smith (2010)
10.1021/bm200959e
Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior.
W. Mulyasasmita (2011)
Tissue Eng. Part B
D Nicodemus (2008)
10.1002/adma.201104072
Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system.
Patricia Y W Dankers (2012)
10.1021/ja910481t
Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading.
K. Galler (2010)
Adv. Mater
M Gillette (2010)
10.1021/bc800310p
Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling.
A. Dirksen (2008)
10.1002/ADFM.200900603
Protein‐Release Behavior of Self‐Assembled PEG–β‐Cyclodextrin/PEG–Cholesterol Hydrogels
F. V. D. Manakker (2009)
Nat. Biotechnol
S V Murphy (2014)
10.1016/S0167-4781(96)00152-2
Molecular cloning, upstream sequence and promoter studies of the human gene for the regulatory subunit RII alpha of cAMP-dependent protein kinase.
K. B. Foss (1997)
10.1126/science.1162912
Stretching Single Talin Rod Molecules Activates Vinculin Binding
A. del Rio (2009)
10.1021/ja500205v
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.
Mingyu Guo (2014)
Adv
P Y W Dankers (2012)
10.1016/j.biomaterials.2010.05.017
An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering.
L. Zhao (2010)
J. Am. Chem. Soc
J H Ryu (2010)
10.1016/S0142-9612(00)00107-1
A review of photocrosslinked polyanhydrides: in situ forming degradable networks.
A. K. Burkoth (2000)
10.1007/978-0-387-30440-3_409
Polymer Physics
T. C. McLeish (2009)
Prog. Polym. Sci
C Vepari (2007)
10.1126/SCIENCE.277.5332.1681
Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER.
S. Carelli (1997)
10.1039/B500307E
Polypeptide hydrogels via a unique assembly mechanism.
T. Deming (2005)
10.1016/j.jconrel.2014.10.008
Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery.
H. Park (2014)
10.1002/mabi.200800376
Shear-reversibly crosslinked alginate hydrogels for tissue engineering.
H. Park (2009)
Oncogene
R Rousset (1998)
10.1016/j.actbio.2014.09.017
High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications.
H. Cui (2015)
Biomacromolecules
Y L Zhang (2011)
Structure
J R Perkins (1233)
10.1002/ADFM.201403550
Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties In Vivo.
Christopher B Rodell (2015)
Adv. Mater
W H Tan (2007)
Invest. Ophthamol. Visual Sci
K E Swindle-Reilly (2009)
Nat. Biotechnol
J R Chen (1041)
10.1016/j.biomaterials.2009.08.058
Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.
H. Tan (2009)
10.1016/S0959-440X(00)00232-3
The design of antiparallel coiled coils.
M. Oakley (2001)
10.1126/SCIENCE.1065879
A Thermally Re-mendable Cross-Linked Polymeric Material
Xiangxu Chen (2002)
J. Mol. Biol
S Montigiani (1996)
10.1016/j.cell.2006.09.044
Force Sensing by Mechanical Extension of the Src Family Kinase Substrate p130Cas
Y. Sawada (2006)
10.1016/j.actbio.2013.07.031
Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications.
Yingkai Liang (2014)
Selvapalam
H. Jung (2014)
10.1038/sj.onc.1201567
The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins
R. Rousset (1998)
10.1021/ja401075s
Intein-triggered artificial protein hydrogels that support the immobilization of bioactive proteins.
M. Ramírez (2013)
Chem. Soc. Rev
Y L Li (2012)
10.1016/J.BIOMATERIALS.2006.09.017
Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior.
Ferdinand P Brandl (2007)
10.1016/j.biomaterials.2011.04.003
The influence of substrate creep on mesenchymal stem cell behaviour and phenotype.
A. Cameron (2011)
Nat. Struct. Biol
M A Verdecia (2000)
Proc. Natl. Acad. Sci. USA 2003
M Alto
10.1021/bm900634x
Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity.
L. Aulisa (2009)
10.1089/ten.teb.2007.0332
Cell encapsulation in biodegradable hydrogels for tissue engineering applications.
G. Nicodemus (2008)
10.1002/adma.200904179
Mechanical properties of cellularly responsive hydrogels and their experimental determination.
April M Kloxin (2010)
Biomacromolecules
W Mulyasasmita (2011)
10.1021/JA067189K
Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry.
A. Dirksen (2006)
Chem. Rev
D H Qu (2015)
10.1021/bm200423f
Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules.
Yaling Zhang (2011)
Structure
W J Fairbrother (1998)
Chem. Soc. Rev
L Yu (2008)
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys
Z Qin (2010)
10.1038/nature09232
Measurement of single-cell dynamics
D. Spiller (2010)
10.1016/j.biomaterials.2009.09.057
The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel.
Y. Pek (2010)
10.1126/science.1167391
Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks
Biswajit Ghosh (2009)
10.1016/S0142-9612(03)00340-5
Hydrogels for tissue engineering: scaffold design variables and applications.
Jeanie L Drury (2003)
10.1016/j.jmb.2010.07.032
Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
C. A. Smith (2010)
Tissue Eng., Part A
H H Ahn (1821)
Acta Biomater
K A Kyburz
Adv. Funct. Mater
C B Rodell (2015)



This paper is referenced by
10.1002/ADOM.201700149
Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay
Guoxing Liu (2017)
10.1002/adma.201604672
Highly Elastic and Self-Healing Composite Colloidal Gels.
M. Diba (2017)
10.1007/s10965-020-02247-6
Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels
C. Luo (2020)
10.1039/C8MH01130C
Supramolecular fluorescent hydrogelators as bio-imaging probes
Nabila Mehwish (2019)
10.1002/adma.201906870
Switching between Elasticity and Plasticity by Network Strength Competition.
Zunzhen Ming (2019)
10.1039/C7RA05120D
New endeavours involving the cooperative behaviour of TMAO and urea towards the globular state of poly(N-isopropylacrylamide)
Payal Narang (2017)
10.1557/mrs.2020.300
Rheological properties of engineered protein polymer networks
W. Shi (2020)
10.1039/c9cc06374a
Decorating protein hydrogels reversibly enables dynamic presentation and release of functional protein ligands on protein hydrogels.
Ruidi Wang (2019)
10.1002/ADFM.201807860
Biomimetic Composite Scaffolds to Manipulate Stem Cells for Aiding Rheumatoid Arthritis Management
Y. Zhao (2019)
10.1016/j.copbio.2016.02.032
Dynamic biomaterials: toward engineering autonomous feedback.
Eliza F. Morris (2016)
10.1039/d0tb01042a
Self-recovering dual cross-linked hydrogels based on bioorthogonal click chemistry and ionic interactions.
H. Zhan (2020)
10.1063/5.0006122
Multiple particle tracking microrheological characterization: Fundamentals, emerging techniques and applications
John A. McGlynn (2020)
10.3389/fbioe.2020.00654
Advances in Synthesis and Applications of Self-Healing Hydrogels
L. Fan (2020)
10.1002/marc.201600353
Exploiting Bisphosphonate-Bioactive-Glass Interactions for the Development of Self-Healing and Bioactive Composite Hydrogels.
M. Diba (2016)
10.1016/j.carbpol.2017.01.024
Creation of the tunable color light emission of cellulose hydrogels consisting of primary rare-earth compounds.
Q. Wang (2017)
10.1021/ACS.CHEMMATER.7B02640
Rapid, Photomediated Healing of Hexaarylbiimidazole-Based Covalently Cross-Linked Gels
Dowon Ahn (2017)
10.1007/978-3-642-11202-7_32
Oesophagus Tissue Engineering: Future Options in Oesophageal Replacement Through Regenerative Medicine
A. Saxena (2017)
10.1002/mabi.201800275
Non-Newtonian Polymer-Nanoparticle Hydrogels Enhance Cell Viability during Injection.
Hector Lopez Hernandez (2019)
10.1002/adma.201705215
Dynamic Hyaluronan Hydrogels with Temporally Modulated High Injectability and Stability Using a Biocompatible Catalyst.
Junzhe Lou (2018)
10.1039/d0py00294a
Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability
Fatih Puza (2020)
10.1002/adma.201903975
Advanced Bottom-Up Engineering of Living Architectures.
V. Gaspar (2019)
10.3390/polym12040884
Injectable Click Polypeptide Hydrogels via Tetrazine-Norbornene Chemistry for Localized Cisplatin Release
Zhen Zhang (2020)
10.1039/C6RA04762A
Hydrophobic association hydrogels based on N-acryloyl-alanine and stearyl acrylate using gelatin as emulsifier
Z. Cui (2016)
10.1039/c7lc00222j
Using μ2rheology to quantify rheological properties during repeated reversible phase transitions of soft matter.
Matthew D. Wehrman (2017)
10.1021/acs.macromol.0c00604
Harnessing Strained Disulfides for Photocurable Adaptable Hydrogels
Georg M. Scheutz (2020)
10.1016/J.JMPS.2019.01.015
Constitutive model reveals the defect-dependent viscoelasticity of protein hydrogels
Qiyang Fan (2019)
10.1002/ADMI.201800118
Self-healing biomaterials : from molecular concepts to clinical applications
M. Diba (2018)
10.1039/C8PY00165K
Dynamically crosslinked carbon dots/biopolymer hydrogels exhibiting fluorescence and multi-stimuli logic-gate responses
C. Shen (2018)
10.1002/marc.201600760
Doubly Dynamic Self-Healing Materials Based on Oxime Click Chemistry and Boronic Acids.
J. Collins (2017)
10.3390/cells9092113
Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine
Gregory Jensen (2020)
10.1002/marc.201800650
Sulfur Chemistry in Polymer and Materials Science.
H. Mutlu (2019)
10.1039/C8ME00063H
Sticky ends in a self-assembling ABA triblock copolymer: the role of ureas in stimuli-responsive hydrogels
Ryan T. Shafranek (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar