Online citations, reference lists, and bibliographies.
← Back to Search

Recent Progress In Obtaining Semiconducting Single-Walled Carbon Nanotubes For Transistor Applications.

A. Islam, J. Rogers, M. Alam
Published 2015 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements.
This paper references
10.1063/1.2364461
High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly
S. McGill (2006)
10.1109/LED.2004.841440
Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)
A. Naeemi (2005)
10.1007/S003390201278
N-doping and coalescence of carbon nanotubes: synthesis and electronic properties
M. Terrones (2002)
10.1016/J.CARBON.2012.06.049
Increasing the semiconducting fraction in ensembles of single-walled carbon nanotubes
J. Parker (2012)
J. Phys. Chem. C
C Kocabas (2007)
Chem. Lett
Y Kato (2015)
IEEE Int. Electron. Devices Meet
S P Wong (2011)
J. Am. Chem. Soc
B Wang (2007)
Biochem. Mol. Biol
K E Van Holde (1998)
10.1021/NL035185X
Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics
A. Javey (2004)
10.1021/NL060305X
Effect of diameter variation in a large set of carbon nanotube transistors.
Y. Tseng (2006)
10.1021/ja312282g
Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant.
A. Sundramoorthy (2013)
10.1021/JZ9004762
Evolution in Catalyst Morphology Leads to Carbon Nanotube Growth Termination
S. Kim (2010)
10.1021/nn503347a
Discovery of wall-selective carbon nanotube growth conditions via automated experimentation.
P. Nikolaev (2014)
10.1021/nn901599g
Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes.
J. Campos-Delgado (2010)
J. Phys. Chem. Lett
S M Kim (2010)
J. Phys. D: Appl. Phys
S Naha (2008)
Nat. Nanotechnol
D Franklin (2010)
10.1088/0022-3727/41/6/065304
A model for catalytic growth of carbon nanotubes
Sayangdev Naha (2008)
10.1063/1.4902915
In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor
Thibault Labbaye (2014)
10.1002/ELAN.200403113
Carbon‐Nanotube Based Electrochemical Biosensors: A Review
J. Wang (2005)
10.1038/nnano.2010.220
Length scaling of carbon nanotube transistors.
A. Franklin (2010)
Appl. Phys. Lett
Y Nosho (2005)
Phys. Rev. Lett
Z Yao (2000)
10.1039/c2cs35325c
Carbon nanotube electronics--moving forward.
C. Wang (2013)
10.1109/TED.2007.901882
Impact of a Process Variation on Nanowire and Nanotube Device Performance
B. Paul (2007)
Phys. E
F.-B Rao (2008)
J. Nanopart. Res
D E Resasco (2002)
ACS Nano
D Shahrjerdi (2013)
Nat. Commun
J Liu (1199)
10.1073/pnas.0709734105
Radio frequency analog electronics based on carbon nanotube transistors
C. Kocabas (2008)
10.1021/JA065767R
Single wall carbon nanotube amplification: en route to a type-specific growth mechanism.
R. Smalley (2006)
10.1103/PhysRevB.72.165423
Structure and formation energy of carbon nanotube caps
S. Reich (2005)
10.1063/1.3467971
Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth
Michael J. Behr (2010)
10.1126/science.270.5239.1179
A Carbon Nanotube Field-Emission Electron Source
W. D. de Heer (1995)
10.1021/NL035097C
Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method
Yiming Li (2004)
Appl. Phys. Lett
M W Rowell (2006)
J. Electrochem. Soc
K H An (1058)
Appl. Phys. Lett
M Joseyacaman (1993)
10.1038/ncomms6332
Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes.
X. Xie (2014)
10.1021/nn200919v
Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.
C. Wang (2011)
10.1021/nn406301r
Carbon nanotube circuit integration up to sub-20 nm channel lengths.
M. Shulaker (2014)
10.1039/c2cc16491d
High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst.
B. Liu (2012)
10.1021/nl801876h
Role of water in super growth of single-walled carbon nanotube carpets.
P. Amama (2009)
Nano Res
S.-J Choi (2014)
10.1002/adfm.201303865
High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes
X. Wang (2014)
10.1021/NL0256457
Enhanced electron field emission in B-doped carbon nanotubes
Jean-Christophe Charlier (2002)
10.1063/1.3402971
Relationship between carbon nanotube density and hysteresis characteristics of carbon nanotube random network-channel field effect transistors
H. Hongo (2010)
Anal. Bioanal.Chem
G Gruner (2006)
Proc. IEEE 2013
F Schwierz (1567)
10.1002/smll.201400696
Semiconducting carbon nanotube aerogel bulk heterojunction solar cells.
Yumin Ye (2014)
10.1038/nnano.2013.56
Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes.
Sung Hun Jin (2013)
10.1021/nl802756u
CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes.
K. Ryu (2009)
10.1007/3-540-39947-X_1
Introduction to Carbon Materials Research
M. Dresselhaus (2001)
IEEE Int. Electron. Devices Meet
N Patil (2009)
J. Phys. Chem. B
M Li (2001)
J. Appl. Phys
E Pop (2007)
J. Mater. Res
S M Kim (1875)
Nat. Commun
Q Cao (2014)
10.1126/science.1213003
True Performance Metrics in Electrochemical Energy Storage
Y. Gogotsi (2011)
10.1021/nl052145f
Thermal conductance of an individual single-wall carbon nanotube above room temperature.
E. Pop (2006)
10.1021/nl9001074
High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes.
C. Kocabas (2009)
10.1038/ncomms1313
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
H. Liu (2011)
10.1088/0957-4484/24/40/405204
High field breakdown characteristics of carbon nanotube thin film transistors.
M. Gupta (2013)
10.1039/C2JM33732K
Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires
J. Robertson (2012)
Chem. Commun
B L Liu (2012)
Sensors: Chemical and Biochemical Sensors
T A Göpel (2008)
J. Phys. Chem. C
N Latorre (2010)
Nano Res
J Wu
Adv. Mater
R C Tenent (2009)
10.1063/1.1807523
Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes
R. Seidel (2004)
10.1246/CL.2011.239
One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer
H. Ozawa (2011)
J. Am. Chem. Soc
R E Smalley (2006)
J. Appl. Phys
M J Behr (2010)
Nat. Nanotechnol
F Schwierz
10.1038/NPHOTON.2008.94
Carbon-nanotube photonics and optoelectronics
P. Avouris (2008)
10.1038/nnano.2006.52
Sorting carbon nanotubes by electronic structure using density differentiation
M. Arnold (2006)
10.1021/nl9014342
Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies.
A. Naumov (2009)
10.1016/J.SYNTHMET.2007.06.012
Optical absorption spectroscopy for determining carbon nanotube concentration in solution
S. H. Jeong (2007)
Adv. Funct. Mater
X Wang (2014)
10.1088/0957-4484/16/6/003
Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions
H. Park (2005)
10.1021/nn302720n
Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
Y. Che (2012)
10.1126/SCIENCE.1087691
Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization
M. Strano (2003)
10.1166/JNN.2010.2939
Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production.
Mukul Kumar (2010)
10.1002/ANIE.200460356
Atomic-step-templated formation of single wall carbon nanotube patterns.
Ariel F Ismach (2004)
Appl. Phys. A: Mater. Sci. Process
M Terrones (2002)
Nano Res
X Feng (2011)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1021/ar500141j
Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
S. B. Samanta (2014)
10.1007/S00339-005-3256-7
In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition
A. Puretzky (2005)
10.1021/JP990882S
Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry
D. Srivastava (1999)
J. Am. Chem. Soc
H Wang (2010)
J. Am. Chem. Soc
S Huang (2003)
Synth. Met
S H Jeong (2007)
Chem. Phys. Lett
E F Kukovitsky (2002)
Design Of Analog Cmos Integrated Circuits
M. Hartmann (2016)
10.1109/JPROC.2007.911051
Carbon Nanotubes for High-Performance Electronics—Progress and Prospect
J. Appenzeller (2008)
10.1021/nn503627h
Toward high-performance digital logic technology with carbon nanotubes.
George S. Tulevski (2014)
10.1557/JMR.2013.322
Field emission from laser cut CNT fibers and films
S. Fairchild (2014)
10.1126/SCIENCE.1091911
Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly
M. Zheng (2003)
10.1557/MRS2006.118
Development of high-performance organic thin-film transistors for large-area displays
Sang-Yun Lee (2006)
10.1021/nn203771u
Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks.
L. Liyanage (2012)
Acc. Chem. Res
Y Chen (2014)
10.1109/TNANO.2009.2016562
Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes
N. Patil (2009)
Phys. Rev. Lett
J Lefebvre (2003)
J. Phys. Chem. C
Y Zhang (2008)
10.1039/c5cc00167f
A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers.
J. Han (2015)
10.1021/NL060068Y
Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures.
M. Cantoro (2006)
Chem. Soc. Rev
H Zhang (1324)
Proc. Natl. Acad. Sci. USA 2014
H Wang
Chem. Commun
J Han (2015)
Nat. Nanotechnol
S Cao (2013)
10.1021/JP056095E
Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts.
G. Lolli (2006)
10.1016/S0009-2614(02)00838-2
Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol
S. Maruyama (2002)
10.1038/31579
Fullerenes: C60's smallest cousin
J. Heath (1998)
10.1021/nl403515c
Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.
Xiaojun Qin (2014)
10.1021/nn405105y
Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity.
Jinghua Li (2014)
10.1016/S0008-6223(00)00058-0
Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles
D. Golberg (2000)
10.1038/nnano.2012.39
Remote Joule heating by a carbon nanotube.
Kamal H. Baloch (2012)
10.1126/science.1168049
Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
K. Gong (2009)
10.1063/1.2209887
Organic solar cells with carbon nanotube network electrodes
Michael W. Rowell (2006)
10.1021/NL0259232
Hysteresis caused by water molecules in carbon nanotube field-effect transistors
W. Kim (2003)
10.1021/nl2043375
Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.
C. Wang (2012)
10.1063/1.2211310
Performance limits of nanobiosensors
P. Nair (2006)
10.1021/NL0508624
The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors.
Z. Chen (2005)
10.1021/JP012085B
Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes
Yiming Li (2001)
10.1021/ja109018h
SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
A. Page (2011)
10.1557/MRS2006.119
Low-Temperature Polycrystalline Silicon Thin-Film Transistors and Circuits on Flexible Substrates
P. Wilt (2006)
10.1021/nn401998r
High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors.
Wen-shan Li (2013)
10.1021/nl803081j
Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries.
A. M. Reddy (2009)
10.1016/S0009-2614(99)01379-2
Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts
Boonyarach Kitiyanan (2000)
10.1021/NL0612289
Role of defects in single-walled carbon nanotube chemical sensors.
J. Robinson (2006)
10.1557/JMR.2010.0264
Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination
S. Kim (2010)
10.1021/JP072887S
Chemistry of Water-Assisted Carbon Nanotube Growth over Fe−Mo/MgO Catalyst
N. Yoshihara (2007)
Carbon Nanotube Field-Effect Transistors With Integrated Ohmic Contacts and High-k Gate Dielectrics
Ali Javey (2003)
Proc. Natl. Acad. Sci. USA 2008
C Kocabas (1405)
ACS Nano
S Esconjauregui (2010)
J. Am. Chem. Soc
W Zhou (2012)
Nat. Nanotechnol
M C Hersam (2008)
Nat. Mater
M Zheng (2003)
Carbon
H Wang (2015)
Nat. Nanotechnol
K H Baloch (2012)
10.1126/science.1201938
Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes
F. Xiong (2011)
Carbon
D Golberg (2000)
10.1038/498443a
Electronics: The road to carbon nanotube transistors
A. Franklin (2013)
10.1016/J.PHYSE.2007.09.185
Effect of hydrogen on the growth of single-walled carbon nanotubes by thermal chemical vapor deposition
Fubo Rao (2008)
10.1126/science.1228061
Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity
N. Behabtu (2013)
10.3390/ma3073818
A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes
N. Komatsu (2010)
10.1016/J.CPLETT.2003.10.080
Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method
Y. Shibuta (2003)
10.1002/ADFM.201102814
Sources of Hysteresis in Carbon Nanotube Field-Effect Transistors and Their Elimination Via Methylsiloxane Encapsulants and Optimized Growth Procedures
Sung Hun Jin (2012)
10.1016/S0009-2614(02)00283-X
Correlation between metal catalyst particle size and carbon nanotube growth
E. Kukovitsky (2002)
10.1021/NL0493794
Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes
R. Krupke (2004)
10.1109/TED.2008.922855
Circuit Modeling and Performance Analysis of Multi-Walled Carbon Nanotube Interconnects
H. Li (2008)
Adv. Mater
M Aguirre (2009)
Proc. Natl. Acad. Sci. USA 2014
K Liu
J. Am. Chem. Soc
J Lu (2006)
J. Phys. D: Appl. Phys
K Yamamoto (1998)
Proc. IEEE 2008
J Appenzeller
Chem. Lett
H Ozawa (2011)
J. Lehtonen , E. I. Kauppinen , Sci. Rep
M He (1460)
10.1007/978-3-319-02315-1
Sensing Technology: Current Status and Future Trends II
A. Mason (2013)
10.1021/nl080814u
Single-walled carbon nanotube thin film emitter-detector integrated optoelectronic device.
M. Itkis (2008)
10.1021/JP906893M
Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model
N. Latorre (2010)
10.1016/S0167-9317(02)00814-6
Carbon nanotubes in interconnect applications
F. Kreupl (2002)
10.1063/1.1865343
n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes
Y. Nosho (2005)
10.1038/nature13434
Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
F. Yang (2014)
10.1126/science.1148841
Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple
V. Chakrapani (2007)
10.1016/J.CARBON.2014.09.063
Catalysts for chirality selective synthesis of single-walled carbon nanotubes
Hong Wang (2015)
10.1002/ADMA.200801995
Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects
Q. Cao (2009)
10.1109/JPROC.2013.2257633
Graphene Transistors: Status, Prospects, and Problems
F. Schwierz (2013)
10.1021/ja2096317
Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field.
E. Neyts (2012)
10.1021/NL034841Q
Extraordinary Mobility in Semiconducting Carbon Nanotubes
T. Dürkop (2004)
10.1038/nnano.2006.192
Nanotube synthesis: cloning carbon.
Z. Ren (2007)
10.1021/nl802661z
Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements.
M. Picher (2009)
10.1109/TED.2007.903291
Simulation of Carbon Nanotube FETs Including Hot-Phonon and Self-Heating Effects
Sayed Hasan (2007)
Adv. Funct. Mater
R Chen (2013)
10.1038/nnano.2008.135
Progress towards monodisperse single-walled carbon nanotubes.
M. Hersam (2008)
Appl. Phys. Lett
T Labbaye (2014)
J. Am. Chem. Soc
C Z Loebick (2010)
Nat. Nanotechnol
S H Jin (2013)
Nat. Photonics
P Avouris (2008)
IEEE Trans. Electron Devices
M A Wahab (2014)
I. Kauppinen , M. Niemelae , A. O. I. Krauset , J. Am. Chem. Soc
M He (2010)
10.1039/b9nr00427k
Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
G. D. Nessim (2010)
10.1103/PHYSREVLETT.90.217401
Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes.
J. Lefebvre (2003)
10.1016/S0379-6779(98)00278-1
Optical Properties of Single-Wall Carbon Nanotubes
H. Kataura (1999)
10.1021/NL034010K
Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection
P. Qi (2003)
10.1007/S12274-009-9013-Z
Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors
N. Pimparkar (2009)
10.1063/1.4864487
Fundamental effects in nanoscale thermocapillary flow
Sung Hun Jin (2014)
Adv. Funct. Mater
S H Jin (2012)
10.1126/SCIENCE.1072631
Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes
M. O'connell (2002)
Appl. Phys. A: Mater. Sci. Process
A A Puretzky (2005)
Adv. Mater
(2015)
IEEE Int. Electron Devices Meet
H Wei (2011)
10.1039/c3nr33560g
A review of fabrication and applications of carbon nanotube film-based flexible electronics.
S. Park (2013)
10.1038/nmat3231
In situ evidence for chirality-dependent growth rates of individual carbon nanotubes.
R. Rao (2012)
10.1246/CL.141193
Separation of Semiconducting Single-walled Carbon Nanotubes Using a Flavin Compound
Y. Kato (2015)
10.1126/SCIENCE.287.5459.1801
Extreme oxygen sensitivity of electronic properties of carbon nanotubes
Collins (2000)
10.1021/nn201314t
Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties.
B. Sarker (2011)
Nat. Commun
F Toshimitsu
10.1039/C1JM10399G
Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water
Pan Li (2011)
10.1016/J.CPLETT.2005.04.054
Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface
H. Ago (2005)
10.1021/nl800967n
Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs.
L. Qu (2008)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
Hazeghi
H.S.P. Wong (2011)
10.1126/SCIENCE.1133781
Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction
Guangyu Zhang (2006)
10.1021/nl803835z
An essential mechanism of heat dissipation in carbon nanotube electronics.
S. Rotkin (2009)
10.1038/srep01460
Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles
Maoshuai He (2013)
Appl. Phys. Lett
P R Nair (2006)
Nat. Commun
H Liu (2011)
Adv. Mater
Q Cao (2006)
J. Phys
A Jorio (2003)
J. Am. Chem. Soc
A K Sundramoorthy (2013)
Appl. Phys. Lett
W Kim (2005)
Carbon
J Parker (2012)
Phys. Rev. B
S Reich (2005)
Phys. Rev. B
A Liao (2010)
10.1007/S00216-005-3400-4
Carbon nanotube transistors for biosensing applications.
G. Grüner (2005)
10.1016/S0009-2614(99)01029-5
Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide
P. Nikolaev (1999)
10.1002/ADFM.200500937
A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode
Q. Wang (2006)
10.1016/J.JPOWSOUR.2004.06.014
High-energy, rechargeable Li-ion battery based on carbon nanotube technology
R. Morris (2004)
10.1021/JA028599L
A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes.
D. Chattopadhyay (2003)
10.1021/nl203117h
Carbon nanotube active-matrix backplanes for conformal electronics and sensors.
T. Takahashi (2011)
10.1063/1.2715031
Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire
H. Ago (2007)
10.1021/JP071387W
Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors†
C. Kocabas (2007)
Nanoscale
G D Nessim (1306)
10.1063/1.2431465
Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors
Q. Cao (2007)
10.1557/MRS2010.554
Recent developments in carbon nanotube sorting and selective growth
J. Liu (2010)
10.1021/NL025602Q
Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes
Woong Kim (2002)
10.1016/J.MATTOD.2014.07.008
Carbon nanotube electronics: recent advances
L. Peng (2014)
Nat. Nanotechnol
P Avouris (2007)
10.1007/978-1-60761-579-8
Carbon Nanotubes
Gordana Ostojic (2010)
Heterogeneous Catalysis: Fundamentals and Applications
J. Ross (2011)
10.1021/JA058214+
Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation.
J. Lu (2006)
10.1002/anie.201000659
Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells.
Guo-ran Li (2010)
IEEE Trans. Computer-Aided Design Integr. Circuits Syst
J Zhang (1103)
10.1038/nnano.2010.116
High-power lithium batteries from functionalized carbon-nanotube electrodes.
S. Lee (2010)
10.1021/JA042544X
Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire.
S. Han (2005)
10.1021/nn203516z
Variability in carbon nanotube transistors: improving device-to-device consistency.
A. Franklin (2012)
10.1021/nn3026172
Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics.
J. Zhang (2012)
10.1021/JA036622C
Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst.
S. Bachilo (2003)
Appl. Phys. Lett
H Ago (2007)
J. Appl. Phys
X Xie (2015)
Angew. Chem. Int. Ed
A Ismach (2004)
10.1126/science.1156588
Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors
M. C. Lemieux (2008)
10.1063/1.1605793
In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes
D. B. Geohegan (2003)
10.1088/0957-4484/20/49/495202
Laser induced selective removal of metallic carbon nanotubes.
M. Mahjouri-Samani (2009)
10.1073/pnas.0811946106
Dislocation theory of chirality-controlled nanotube growth
F. Ding (2009)
10.1021/NL061534M
High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer.
R. Weitz (2007)
10.1109/TCAD.2011.2121010
Characterization and Design of Logic Circuits in the Presence of Carbon Nanotube Density Variations
J. Zhang (2011)
10.1023/A:1020174126542
A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a Solid Catalyst
D. Resasco (2002)
10.1038/nnano.2009.355
Nanotube electronics for radiofrequency applications.
C. Rutherglen (2009)
10.1088/1367-2630/5/1/139
Characterizing carbon nanotube samples with resonance Raman scattering
A. Jorio (2003)
10.1021/nn1025675
Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects.
Santiago Esconjauregui (2010)
10.1063/1.2717855
Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
E. Pop (2007)
J. Am. Chem. Soc
S H Hur (2005)
Appl. Phys. Expr
T Tanaka (2008)
10.1021/NL034937K
Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy
M. Strano (2004)
J. Am. Chem. Soc
E C Neyts (1256)
10.1038/nnano.2012.257
Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.
Q. Cao (2013)
10.1007/s12274-012-0219-0
Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes
J. Wu (2012)
10.1021/JA046482M
A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices.
L. An (2004)
J. Nanosci. Nanotechnol
M Kumar (2010)
Adv. Mater
Q Cao (2009)
IEEE Int. Symp. Low Power Electron . Design 2007
A Balijepalli
J. Am. Chem. Soc
L An (2004)
Nat. Nanotechnol
C Rutherglen (2009)
IEEE Int. Electron. Devices Meet
F Kreupl (2004)
Chem. Phys. Lett
Y Shibuta (2003)
J. Am. Chem. Soc
G Hong (2009)
10.1021/nn200198b
Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods.
Wei-wei Zhou (2011)
10.1021/nl8034866
Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes.
T. Tanaka (2009)
10.1021/JA070808K
(n,m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts.
Bo Wang (2007)
10.1143/APEX.1.114001
High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis
T. Tanaka (2008)
10.1038/nnano.2007.77
High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
Seong Jun Kang (2007)
10.1088/0022-3727/31/8/002
RAPID COMMUNICATION: Orientation and purification of carbon nanotubes using ac electrophoresis
K. Yamamoto (1998)
10.1038/354056a0
Helical microtubules of graphitic carbon
S. Iijima (1991)
10.1063/1.3327521
High quality solution processed carbon nanotube transistors assembled by dielectrophoresis
P. Stokes (2010)
10.1021/nl202695v
Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.
J. Zhang (2011)
10.1149/1.1491235
High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole
K. An (2002)
10.1021/ja8035724
Low-temperature single-wall carbon nanotubes synthesis: feedstock decomposition limited growth.
E. Mora (2008)
Energy Environ. Sci
B J Landi (2009)
Synth. Met
H Kataura (1999)
Adv. Funct. Mater
Z Wang (2006)
J. Appl. Phys
S H Jin (2014)
J. Phys. Chem. B
G Lolli (2006)
Chem. Mater
Y Li (1008)
J. Am. Chem. Soc
S M Bachilo (2003)
Flexible Electronics: Materials and Applications
W. S. Wong (2009)
10.1021/JA034475C
Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates.
Shaoming Huang (2003)
10.1021/ar400314b
Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications.
Y. Chen (2014)
10.1126/SCIENCE.1086534
Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes
R. Krupke (2003)
10.1038/ncomms1545
Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s.
H. Lee (2011)
10.1126/science.273.5274.483
Crystalline Ropes of Metallic Carbon Nanotubes
A. Thess (1996)
10.1021/ja3038992
General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant.
Wei-wei Zhou (2012)
10.1021/nl803496s
Selective growth of well-aligned semiconducting single-walled carbon nanotubes.
L. Ding (2009)
10.1038/nature12502
Carbon nanotube computer
M. Shulaker (2013)
10.1038/ncomms6071
Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch.
Q. Cao (2014)
10.1021/JA0553203
Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.
Seung-Hyun Hur (2005)
10.1126/SCIENCE.1096524
Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes
S. Zaric (2004)
10.1063/1.3204971
Joule heating in single-walled carbon nanotubes
T. Ragab (2009)
Chem. Soc. Rev
C Wang (2013)
Modern Microwave Transistors: Theory, Design, and Performance
F. Schwierz (2002)
Z. Ren , Nat. Nanotechnol
(2007)
J. Appl. Phys
A E Islam (2012)
J. Am. Chem. Soc
E Mora (2008)
J. Mater. Chem
J Robertson (1985)
J. Am. Chem. Soc
A J Page (2011)
J. Am. Chem. Soc
S Han (2005)
Chem. Phys. Lett
P Nikolaev (1999)
10.1088/0957-4484/19/29/295202
The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes.
E. Pop (2008)
10.1021/nn302185d
Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.
Q. Cao (2012)
10.1023/A:1016064212984
Effect of local strain on the reactivity of carbon nanotubes
T. Y. Astakhova (2002)
10.1007/S12274-011-0152-7
Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors
Yasumitsu Miyata (2011)
10.1021/nn204875a
Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography.
S. Park (2012)
10.1021/nl501417h
Engineering the activity and lifetime of heterogeneous catalysts for carbon nanotube growth via substrate ion beam bombardment.
A. E. Islam (2014)
Appl. Phys. Lett
P Stokes (2010)
Appl. Phys. Lett
Q Cao (2007)
Electroanalysis
J Wang (2005)
Appl. Phys. Lett
S Shekhar (2011)
10.1039/b920457c
Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties.
H. Zhang (2011)
10.1007/S12274-011-0133-X
In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts
Xiaofeng Feng (2011)
10.1038/nnano.2011.1
Flexible high-performance carbon nanotube integrated circuits.
Dong-ming Sun (2011)
10.1063/1.3600664
Correlated electrical breakdown in arrays of high density aligned carbon nanotubes
S. Shekhar (2011)
10.1002/ADMA.200803551
Ultrasmooth, Large‐Area, High‐Uniformity, Conductive Transparent Single‐Walled‐Carbon‐Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying
R. Tenent (2009)
10.1002/SMLL.200500120
Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.
C. Kocabas (2005)
10.1038/363603A0
Single-shell carbon nanotubes of 1-nm diameter
S. Iijima (1993)
10.1103/PhysRevLett.101.256804
Avalanche-induced current enhancement in semiconducting carbon nanotubes.
A. Liao (2008)
J. Power Sources
R S Morris (2004)
Chem. Phys. Lett
H Ago (2005)
http://www.nanointegris.com/en/semiconducting (accessed: June, 2015). wileyonlinelibrary.com ©
Inc Nanointegris (2015)
Nat. Nanotechnol
S W Lee (2010)
10.1016/J.PHYSE.2007.11.034
Hysteresis suppression in self-assembled single-wall nanotube field effect transistors
PingAn Hu (2008)
10.1038/nature01797
Ballistic carbon nanotube field-effect transistors
A. Javey (2003)
10.1021/NL050254O
Transparent and flexible carbon nanotube transistors.
E. Artukovic (2005)
IEEE J. Solid-State Circuits
M M Shulaker (190)
J. Appl. Phys
R V Seidel (2004)
10.1016/0038-1098(92)90911-R
Energetics of carbon nano-tubes
S. Sawada (1992)
10.1038/nature08116
DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes
X. Tu (2009)
Nano Res
N Pimparkar (2009)
Appl. Phys. Lett
G J Brady (2014)
Angew. Chem. Int. Ed
G Li (2010)
Solid State Commun
S Sawada (1992)
J. Am. Chem. Soc
D Chattopadhyay (2003)
IEEE Trans. Electron Devices
H Li (1328)
10.1021/nn304794w
Electrostatic dimension of aligned-array carbon nanotube field-effect transistors.
M. Wahab (2013)
10.1021/nn403935v
High-performance air-stable n-type carbon nanotube transistors with erbium contacts.
D. Shahrjerdi (2013)
10.1021/CM000787S
Preparation of Monodispersed Fe−Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes
Y. Li (2001)
10.1126/SCIENCE.1058782
Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown
P. G. Collins (2001)
10.1002/ADMA.200501740
Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics
Q. Cao (2006)
10.1143/APEX.2.071601
Performance Enhancement of Thin-Film Transistors by Using High-Purity Semiconducting Single-Wall Carbon Nanotubes
S. Fujii (2009)
10.1021/nn505566r
Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes.
F. Du (2014)
10.1021/ja106609y
Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst.
Maoshuai He (2010)
10.1002/smll.201202434
Production of high-purity single-chirality carbon nanotube hybrids by selective polymer exchange.
S. D. Stranks (2013)
10.1002/adma.200903238
Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz.
Suck Won Hong (2010)
10.1021/ja9068529
Direct growth of semiconducting single-walled carbon nanotube array.
Guo Hong (2009)
10.1002/smll.201101594
Carbon nanomaterials for advanced energy conversion and storage.
L. Dai (2012)
10.1021/nl400544q
Carbon nanotube complementary wrap-gate transistors.
A. Franklin (2013)
10.1021/nn4000435
Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors.
Huiliang Wang (2013)
10.1063/1.4866577
High performance transistors via aligned polyfluorene-sorted carbon nanotubes
Gerald J. Brady (2014)
10.1126/science.225.4658.197
Materials
L. Napolitano (1984)
Acc. Chem. Res
S K Samanta (2014)
Appl. Phys. Lett
D B Geohegan (1851)
J. Mater. Chem
P Li (2011)
10.1007/S12274-009-9057-0
Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes
K. Moshammer (2009)
10.1021/ja106937y
Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts.
Hong Wang (2010)
10.1063/1.2108127
Electrical contacts to carbon nanotubes down to 1nm in diameter
Woong Kim (2005)
10.1109/JSSC.2013.2282092
Sensor-to-Digital Interface Built Entirely With Carbon Nanotube FETs
M. Shulaker (2014)
10.1063/1.4916537
Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes
X. Xie (2015)
10.1021/nl402259k
Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.
B. Liu (2013)
10.1021/nl902522f
Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications.
C. Wang (2009)
Adv. Mater
S W Hong (1826)
Nat. Nanotechnol
M S Arnold (2006)
J. Appl. Phys
T Ragab (2009)
Chem. Phys. Lett
S Maruyama (2002)
Nat. Commun
H W Lee (2011)
J. Appl. Phys
H Hongo (2010)
Nat. Nanotechnol
S J Kang (2007)
Nano Res
Y Miyata (2011)
J. Mater. Res
S B Fairchild (2014)
10.1126/science.1222453
Carbon Nanotubes: Present and Future Commercial Applications
M. D. De Volder (2013)
10.1109/TED.2014.2360869
Implications of Electrical Crosstalk for High Density Aligned Array of Single-Wall Carbon Nanotubes
M. Wahab (2014)
Nano Res
K Moshammer (2009)
Nat. Nanotechnol
D Sun (2011)
Phys. Rev. Lett
A Liao (2008)
10.1063/1.2810086
Semiconductor Material and Device Characterization
D. Schroder (1990)
Waarbeek
N. Behabtu (2013)
10.1021/nl0730965
A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.
G. Close (2008)
10.1073/pnas.1320045111
Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits
H. Wang (2014)
10.1109/7361.983465
Chemical sensors for portable, handheld field instruments
D. Wilson (2001)
10.1002/cssc.201100177
Carbon nanotube mass production: principles and processes.
Q. Zhang (2011)
10.1021/JP710691J
Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation
Y. Zhang (2008)
IEEE Sens. J
D M Wilson (2001)
J. Phys. Chem. B
D Srivastava (1999)
10.1063/1.109315
Catalytic growth of carbon microtubules with fullerene structure
M. Jose-yacaman (1993)
IEEE Int. Electron Devices Meet
M M Shulaker (2014)
IEEE Trans. Electron Devices
S Hasan (2007)
10.1103/PhysRevLett.84.2941
High-field electrical transport in single-wall carbon nanotubes
Yao (2000)
10.1021/nn800723u
Sorting carbon nanotubes for electronics.
R. Martel (2008)
10.1038/ncomms6041
Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry.
F. Toshimitsu (2014)
10.1109/LED.2008.2001259
A “Bottom-Up” Redefinition for Mobility and the Effect of Poor Tube–Tube Contact on the Performance of CNT Nanonet Thin-Film Transistors
N. Pimparkar (2008)
10.1002/ADMA.200900550
The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors
C. M. Aguirre (2009)
10.1017/cbo9781139164313
Quantum Transport: Atom to Transistor
S. Datta (2004)
IEEE Trans. Nanotechnol
N Patil (2009)
Nat. Commun
X Xie (2014)
Phys. Rev. Lett
X J Zhou (2005)
ACS Nano
J Li (2014)
J. Phys. Chem. C
N Yoshihara (2007)
ACS Nano
S.-J Cao (2012)
Nat. Mater
R Rao (2012)
10.1073/pnas.1318851111
Systematic determination of absolute absorption cross-section of individual carbon nanotubes
K. Liu (2014)
10.1021/ja102011h
Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes.
Codruta Zoican Loebick (2010)
10.1021/nl101513z
High-performance carbon nanotube light-emitting diodes with asymmetric contacts.
S. Wang (2011)
10.1021/nl9025488
Alignment controlled growth of single-walled carbon nanotubes on quartz substrates.
J. Xiao (2009)
10.1021/ja2008278
Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition.
B. Yu (2011)
10.1038/ncomms2205
Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy.
J. Liu (2012)
10.1103/PhysRevLett.95.146805
Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors.
X. Zhou (2005)
10.1021/nl203041n
Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes.
C. Jeong (2011)
10.1021/nn400053k
High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.
G. Tulevski (2013)
10.1038/nnano.2007.300
Carbon-based electronics.
P. Avouris (2007)
Weinheim REVIEW Adv. Mater
Wiley-Vch Verlag Gmbh (2015)
Appl. Phys. Lett
S A Mcgill (2006)
J. Am. Chem. Soc
B Yu (2011)
Russ. Chem. Bull
T Y Astakhova (2002)
Chem. Phys. Lett
B Kitiyanan (2000)
Phys. Rep
M S Dresselhaus (2005)
10.1080/10131752.2013.783396
Today
Pamela van Schaik (2013)
10.1021/nn901700u
Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth.
P. Amama (2010)
10.1063/1.3692048
Effect of variations in diameter and density on the statistics of aligned array carbon-nanotube field effect transistors
A. Islam (2012)
10.1039/B904116H
Carbon nanotubes for lithium ion batteries
B. Landi (2009)
10.1002/9781118958254
Emerging nanoelectronic devices
A. Chen (2014)
IEEE Trans. Electron Devices
B C Paul (2007)
10.1103/PhysRevB.82.205406
Thermal dissipation and variability in electrical breakdown of carbon nanotube devices
A. Liao (2010)
10.1016/J.PHYSREP.2004.10.006
Raman spectroscopy of carbon nanotubes
M. Dresselhaus (2005)
10.1038/NMAT877
DNA-assisted dispersion and separation of carbon nanotubes
M. Zheng (2003)
10.1021/nl203701g
Sub-10 nm carbon nanotube transistor
A. Franklin (2011)
10.1021/nn1019384
Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics.
M. Ham (2010)
High-Performance, Hysteresis-Free Carbon Nanotube FETs via Directed Assembly
S. A. McGill (2006)
10.1002/ADFM.201300124
Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes
Ruiyi Chen (2013)



This paper is referenced by
10.1002/SMTD.201800189
Enhanced Process Integration and Device Performance of Carbon Nanotubes via Flocculation
T. Gao (2018)
10.1002/PSSB.201600659
Separation and optical identification of semiconducting and metallic single-walled carbon nanotubes
V. A. Eremina (2016)
10.1002/adfm.201907150
Fast and Ultraclean Approach for Measuring the Transport Properties of Carbon Nanotubes
N. Wei (2020)
10.1002/PSSB.201700139
Field Effect Transistor Based on Solely Semiconducting Single-Walled Carbon Nanotubes for the Detection of 2-Chlorophenol
A. Chernov (2018)
10.1134/S1070427219090106
Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1
A. Krasilin (2019)
10.1002/ADFM.201902273
Recent Advances in Applications of Sorted Single‐Walled Carbon Nanotubes
Abdulaziz S R Bati (2019)
10.1039/c7nr03302h
Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation.
L. Wei (2017)
10.1002/ADOM.201600361
Ultrafast Photophysics of Single‐Walled Carbon Nanotubes
Giancarlo Soavi (2016)
10.1021/ACS.JPCC.7B06653
Investigation of Etching Behavior of Single-Walled Carbon Nanotubes Using Different Etchants
Zequn Wang (2017)
10.1002/ADFM.201702341
Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm
M. Balestrieri (2017)
10.1021/ACS.JPCC.5B11346
Competitive Impact of Nanotube Assembly and Contact Electrodes on the Performance of CNT-based FETs
M. Toader (2016)
10.1016/J.CARBON.2018.04.047
Selective growth of semiconducting single-wall carbon nanotubes using SiC as a catalyst
Min Cheng (2018)
10.1002/AELM.201600229
All‐Carbon Thin‐Film Transistors as a Step Towards Flexible and Transparent Electronics
D. Sun (2016)
10.1002/adma.201602736
Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.
K. Fukuda (2017)
10.1126/science.aan2476
Carbon nanotube transistors scaled to a 40-nanometer footprint
Q. Cao (2017)
10.1002/advs.201801653
Printed Diodes: Materials Processing, Fabrication, and Applications
Yihang Chu (2019)
10.1016/J.CPLETT.2016.07.049
Enhancement of carbon nanotube FET performance via direct synthesis of poly (sodium 4-styrenesulfonate) in the transistor channel
M. Toader (2016)
10.1002/AENM.201600522
Toward High‐Performance Carbon Nanotube Photovoltaic Devices
Y. Liu (2016)
10.1038/s41928-019-0330-2
Carbon nanotube digital electronics
L. Peng (2019)
10.1007/978-3-319-70166-0_5
Toxicological Impact of Carbon Nanomaterials on Plants
P. M. G. Nair (2018)
10.1002/ADFM.201703938
Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors
W. Gao (2017)
10.1021/acs.langmuir.6b02475
Analysis Method for Quantifying the Morphology of Nanotube Networks.
D. Vobornik (2016)
10.1039/c7cs00104e
Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications.
Rufan Zhang (2017)
10.1088/1361-6641/AA89CE
Flexible diodes for radio frequency (RF) electronics: a materials perspective
J. Semple (2017)
10.1016/J.MSER.2016.08.002
Nanostructured transparent conductive films: Fabrication, characterization and applications
L. He (2016)
10.1002/adma.201806480
Self-Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices.
Zhao Wang (2019)
10.1021/acsnano.8b06511
Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications.
R. Rao (2018)
10.1002/CHIN.201609268
Recent Progress in Obtaining Semiconducting Single‐Walled Carbon Nanotubes for Transistor Applications
A. Islam (2016)
10.1016/J.CARBON.2016.07.035
Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer
C. Zhou (2016)
10.1093/humupd/dmw020
Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
Joydeep Das (2016)
10.1002/adma.201603895
Assembly and Electronic Applications of Colloidal Nanomaterials.
J. Zhu (2017)
10.1002/adma.201603565
A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes.
D. Liu (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar