Online citations, reference lists, and bibliographies.
← Back to Search

Mass Production Of Nanogap Electrodes Toward Robust Resistive Random Access Memory.

Ajuan Cui, Z. Liu, H. Dong, F. Yang, Y. Zhen, W. Li, J. Li, Changzhi Gu, X. Zhang, Rong-jin Li, W. Hu
Published 2016 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Nanogap electrodes arrays are fabricated by combining atomic layer deposition, adhesive tape, and chemical etching. A unipolar nonvolatile resistive-switching behavior is identified in the nanogap electrodes, showing stable, robust performance and the multibit storage ability, demonstrating great potential in ultrahigh-density storage. The formation and dissolution of Si conductive filaments and migration of Au atoms is the mechanism behind the resistive switching.
This paper references
10.1016/S0040-6090(03)00772-7
Fabrication of nano-gap electrodes for measuring electrical properties of organic molecules using a focused ion beam
T. Nagase (2003)
10.1063/1.1857095
Controlled fabrication of nanogaps in ambient environment for molecular electronics
D. Strachan (2005)
10.1063/1.126795
Fabrication of nanometer size gaps in a metallic wire
J. Lefebvre (2000)
10.1126/SCIENCE.1112666
On-Wire Lithography
L. Qin (2005)
10.1021/nl1012085
Vertically oriented sub-10-nm plasmonic nanogap arrays.
H. Im (2010)
10.1021/nl900698s
Reconnectable sub-5 nm nanogaps in ultralong gold nanowires.
C. Xiang (2009)
10.1063/1.124354
Fabrication of metallic electrodes with nanometer separation by electromigration
H. Park (1999)
10.1021/nl102255r
Resistive switches and memories from silicon oxide.
J. Yao (2010)
10.1088/0034-4885/52/3/002
Electromigration in metals
P. Ho (1989)
10.1021/nl503126s
Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities.
Xiaoshu Chen (2015)
10.1002/smll.201400509
Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
Z. Hu (2014)
10.1088/0957-4484/16/6/002
Shadow-evaporated nanometre-sized gaps and their use in electrical studies of nanocrystals
Lianfeng Sun (2005)
10.1002/ADMA.200900375
Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges
R. Waser (2009)
10.1063/1.2895644
Nanogaps with very large aspect ratios for electrical measurements
A. Fursina (2008)
16 , 631 ; b)
L F Sun (2000)
10.1021/ja108277r
Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.
J. Yao (2011)
10.1088/0957-4484/16/8/034
Nanometre spaced electrodes on a cleaved AlGaAs surface
Sebastian M. Luber (2005)
10.1038/srep06722
Squeezing Millimeter Waves through a Single, Nanometer-wide, Centimeter-long Slit
Xiaoshu Chen (2014)
10.1063/1.3672195
Non-volatile high-speed resistance switching nanogap junction memory
S. Kumaragurubaran (2011)
10.1002/smll.201501283
Nanogap Electrodes towards Solid State Single-Molecule Transistors.
Ajuan Cui (2015)
10.1021/NL050106Y
Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles.
H. Zandbergen (2005)
10.1039/C5RA00923E
Gap separation-controlled nanogap electrodes by molecular ruler electroless gold plating
Victor M. Serdio (2015)
10.1016/J.MEE.2006.01.165
Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly
J. Tang (2006)
10.1002/smll.200901100
Resistive switching in nanogap systems on SiO2 substrates.
J. Yao (2009)
10.1143/APEX.5.085201
Resistive Switching Effects in Metallic Nanogap Electrode Fabricated by Electroless Gold Plating
Y. Naitoh (2012)
10.1002/adma.201500527
Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.
Ajuan Cui (2015)
10.1063/1.3559612
Resistive switching effects in single metallic tunneling junction with nanometer-scale gap
T. Mizukami (2011)
22 , 286 ; b)
T Li (2010)
10.1063/1.370656
Electric field induced surface modification of Au
T. Mayer (1999)
10.1021/NL0703626
Sub-10 nm device fabrication in a transmission electron microscope.
M. D. Fischbein (2007)
10.1088/0957-4484/17/22/022
Resistance switch employing a simple metal nanogap junction.
Y. Naitoh (2006)
10.1021/ja800338w
On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.
X. Chen (2008)
National Natural Science Foundation of China (NSFC)
Jiehua Zhu (2013)
10.1021/nl202017k
Memory and threshold resistance switching in Ni/NiO core-shell nanowires.
Li He (2011)
10.1063/1.4909533
Stabilization of multiple resistance levels by current-sweep in SiOx-based resistive switching memory
F. Zhou (2015)
10.1002/anie.200806028
Spectroscopic tracking of molecular transport junctions generated by using click chemistry.
X. Chen (2009)
DOI: 10.1002/adma.201603124 www.advmat.de www.MaterialsViews.com
J. Tang (2006)
10.1038/nature03190
Quantized conductance atomic switch
K. Terabe (2005)
10.1063/1.2172292
Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures
M. D. Fischbein (2006)
10.1021/NL050581W
Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires.
S. Liu (2005)
10.1038/ncomms5232
Electrochemical dynamics of nanoscale metallic inclusions in dielectrics.
Yuchao Yang (2014)
10.1063/1.4748277
Resistance switch using metal nanogap electrodes in air
H. Suga (2012)
10.1002/ADFM.201401304
Direct Observation of Conversion Between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology
Haitao Sun (2014)
10.1063/1.3481067
Influence of electrode size on resistance switching effect in nanogap junctions
H. Suga (2010)
10.1515/9783111576855-015
J
Seguin Hen (1824)
10.1038/ncomms3361
Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves.
Xiaoshu Chen (2013)
10.1063/1.1436275
Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography
K. Liu (2002)
10.1016/0042-207x(67)90867-6
Thin Solid Films
T. Ylinen-Hinkka (2009)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar