Online citations, reference lists, and bibliographies.
← Back to Search

Counting Of Oxygen Defects Versus Metal Surface Sites In Methanol Synthesis Catalysts By Different Probe Molecules.

Matthias B. Fichtl, J. Schumann, I. Kasatkin, Nikolas Jacobsen, M. Behrens, R. Schlögl, M. Muhler, O. Hinrichsen
Published 2014 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Different surface sites of solid catalysts are usually quantified by dedicated chemisorption techniques from the adsorption capacity of probe molecules, assuming they specifically react with unique sites. In case of methanol synthesis catalysts, the Cu surface area is one of the crucial parameters in catalyst design and was for over 25 years commonly determined using diluted N2O. To disentangle the influence of the catalyst components, different model catalysts were prepared and characterized using N2O, temperature programmed desorption of H2, and kinetic experiments. The presence of ZnO dramatically influences the N2O measurements. This effect can be explained by the presence of oxygen defect sites that are generated at the Cu-ZnO interface and can be used to easily quantify the intensity of Cu-Zn interaction. N2O in fact probes the Cu surface plus the oxygen vacancies, whereas the exposed Cu surface area can be accurately determined by H2.
This paper references
Catal. Lett
T Genger (1999)
10.1021/CS200055D
Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation
L. Grabow (2011)
Catal. Lett
H Wilmer (2002)
Angew. Chem. Int. Ed
S Zander (2013)
10.1021/jz301119k
Activity and Synergy Effects on a Cu/ZnO(0001) Surface Studied Using First-Principle Thermodynamics.
J. Xiao (2012)
10.1016/0021-9517(87)90094-7
The measurement of copper surface areas by reactive frontal chromatography
G. Chinchen (1987)
10.1126/SCIENCE.1069325
Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals
P. L. Hansen (2002)
10.1016/S0926-860X(99)00313-0
The chemical modification seen in the Cu/ZnO methanol synthesis catalysts
T. Fujitani (2000)
Z. anorg. allg. Chem
M Behrens
10.1016/J.SUSC.2006.12.077
Surface structures of atomic hydrogen adsorbed on Cu(1 1 1) surface studied by density-functional-theory calculations
M. Luo (2007)
10.1023/A:1019000927366
The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity
T. Fujitani (1998)
10.1016/J.JCAT.2009.01.017
CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo
Qian-Lin Tang (2009)
10.1002/anie.201301419
The role of the oxide component in the development of copper composite catalysts for methanol synthesis.
S. Zander (2013)
10.1039/B515487A
The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis.
R. Naumann d’Alnoncourt (2006)
10.1002/ANGE.200462374
Aktive Zentren an Oxidoberflächen: Die ZnO-katalysierte Methanolsynthese aus CO und H2†
M. Kurtz (2005)
10.1002/anie.201302315
Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO.
Vadim Schott (2013)
10.1007/BF00769661
Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts
M. Muhler (1992)
10.1002/ANGE.200503068
Über den Einfluss von Sauerstoffdefektstellen auf die katalytische Aktivität von Zinkoxid
S. Polarz (2006)
10.1016/J.JCAT.2008.11.028
Transient behavior of Cu/ZnO-based methanol synthesis catalysts
P. C. K. Vesborg (2009)
10.1023/A:1018916806816
Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2
I. A. Fisher (1997)
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
K. Perez (2014)
10.1002/ANGE.201204995
Der Weg in die Unabhängigkeit vom Öl mithilfe einer Chemie auf der Basis von erneuerbarem Methanol
G. Olah (2013)
10.1006/JCAT.1995.1250
A Kinetic Model of Methanol Synthesis
T. Askgaard (1995)
J. Am. Chem. Soc
M Behrens (2013)
10.1039/C3CY00573A
New and revisited insights into the promotion of methanol synthesis catalysts by CO2
O. Martin (2013)
10.1038/nature01557
Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies
T. Mitsui (2003)
10.1002/ANGE.201301419
Die Rolle der Oxidkomponente für die Entwicklung von Kupfer‐Komposit‐Katalysatoren zur Synthese von Methanol
S. Zander (2013)
Chem. Eng. Technol
O Hinrichsen (2000)
10.1023/A:1019181715731
The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction
M. S. Spencer (1999)
10.1002/ANIE.200462374
Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2.
M. Kurtz (2005)
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2012
T Kandemir
10.1595/147106707x169786
Scientific Bases for the Preparation of Heterogeneous Catalysts
E. Gaigneaux (2002)
Catal. Sci. Tech
M Peter (2012)
10.1006/JCAT.1997.1629
Kinetic Implications of Dynamical Changes in Catalyst Morphology during Methanol Synthesis over Cu/ZnO Catalysts
C. V. Ovesen (1997)
10.1126/science.1219831
The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts
M. Behrens (2012)
10.1002/ANGE.201302315
Chemische Aktivität von dünnen Oxidschichten: Starke Träger- Wechselwirkungen ergeben eine neue ZnO-Dünnfilmphase
Vadim Schott (2013)
10.1002/ANIE.200503068
On the role of oxygen defects in the catalytic performance of zinc oxide.
S. Polarz (2006)
10.1023/A:1020560628950
Dynamical Changes in Cu/ZnO/Al2O3 Catalysts
H. Wilmer (2002)
J. Catal
H Wilmer (2003)
10.1016/S0167-2991(09)60842-9
Studies in Surface Science and Catalysis
B. Delmon (1988)
10.1002/anie.201204995
Towards oil independence through renewable methanol chemistry.
G. Olah (2013)
10.1016/0039-6028(96)00252-X
Coverage and structure of deuterium on Cu(111)
Geunseop Lee (1996)
10.1016/0039-6028(89)90266-5
The adsorption of atomic hydrogen on Cu(111) investigated by reflection-absorption infrared spectroscopy, electron energy loss spectroscopy and low energy electron diffraction
E. Mccash (1989)
10.1021/ja310456f
Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al.
M. Behrens (2013)
Catal. Lett
M Peter
10.1006/JCAT.2000.2930
In Situ Investigations of Structural Changes in Cu/ZnO Catalysts
J. Grunwaldt (2000)
10.1103/PHYSREVLETT.110.086108
Tuning the reactivity of a Cu/ZnO nanocatalyst via gas phase pressure.
Luis Martínez-Suárez (2013)



This paper is referenced by
10.1080/10916466.2018.1563612
Methanol synthesis revisited: The nature of the active site of Cu in industrial Cu/ZnO/Al2O3 catalyst and Cu-Zn synergy
Makarand R. Gogate (2019)
10.1016/j.fuel.2020.117213
Urea-derived Cu/ZnO catalyst being dried by supercritical CO2 for low-temperature methanol synthesis
Peipei Zhang (2020)
10.1021/CS502038Y
From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol
N. Brown (2015)
10.1038/s41467-018-04248-y
Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting
X. Fan (2018)
10.3390/CATAL7060183
Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen
Xinhai Xu (2017)
10.1016/J.APCATB.2019.02.023
Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis
Leon Zwiener (2019)
10.1016/J.MCAT.2018.06.020
Component ratio dependent Cu/Zn/Al structure sensitive catalyst in CO2/CO hydrogenation to methanol
M. Sadeghinia (2018)
10.1016/J.APCATA.2018.08.017
Water-gas shift reaction over a novel Cu-ZnO/HAP formulation: Enhanced catalytic performance in mobile fuel cell applications
Z. Boukha (2018)
10.1002/cctc.201902286
Oriented Isomorphous Substitution: An Efficient and Alternative Route to Fabricate the Zn Rich Phase Pure (Cu1−x,Znx)2(OH)2CO3 Precursor Catalyst for Methanol Synthesis
H. Zheng (2020)
10.1016/j.cattod.2020.05.018
Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2
Valentin L’hospital (2020)
10.1002/anie.201603368
Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales.
T. Lunkenbein (2016)
10.1016/J.CATTOD.2019.03.034
Structure and activity of Cu/ZnO catalysts co-modified with aluminium and gallium for methanol synthesis
R. Guil-López (2020)
10.1016/j.ijhydene.2020.06.166
Effect of zinc source on the ethanol synthesis from syngas over a slurry CuZnAl catalyst
J. Liu (2020)
10.1002/cctc.201500123
The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts
Felix Studt (2015)
10.1002/cctc.201601102
Surface Alloy or Metal–Cation Interaction‐The State of Zn Promoting the Active Cu Sites in Methanol Synthesis Catalysts
D. Großmann (2017)
10.1016/J.APCATB.2016.02.024
N2O decomposition over CuO/CeO2 catalyst: New insights into reaction mechanism and inhibiting action of H2O and NO by operando techniques
Maxim Zabilskiy (2016)
10.1002/cctc.202000777
Cu−Zn Alloy Formation as Unfavored State for Efficient Methanol Catalysts
E. Frei (2020)
10.1039/c4cp02812k
Cu/ZnO nanocatalysts in response to environmental conditions: surface morphology, electronic structure, redox state and CO2 activation.
Luis Martínez-Suárez (2014)
10.1002/cctc.201900413
Impact of the Oxygen Vacancies on Copper Electronic State and Activity of Cu‐Based Catalysts in the Hydrogenation of Methyl Acetate to Ethanol
Yushan Xi (2019)
10.1007/s10562-016-1712-y
The Temperature-Programmed Desorption of H2 from Cu/ZrO2
J. Schittkowski (2016)
10.1021/JP510015V
Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions
Christian Holse (2015)
10.1021/acscatal.0c00574
The Mechanism of Interfacial CO2 Activation on Al Doped Cu/ZnO
Maria Heenemann (2020)
10.1039/C6TA09038A
Direct conversion of syngas to DME: synthesis of new Cu-based hybrid catalysts using Fehling’s solution, elimination of the calcination step
S. Asthana (2017)
10.1016/J.JCAT.2015.01.021
The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu + ZnO mechanical mixtures
A. Valant (2015)
10.1021/ACSCATAL.5B00188
Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts
Julia Schumann (2015)
10.1039/C6CY02585D
Hydrogenation/oxidation triggered highly efficient reversible color switching of organic molecules
Xiao Zhou (2017)
10.1016/J.MCAT.2018.07.023
Strong metal-oxide interactions induce bifunctional and structural effects for Cu catalysts
Y. Zhu (2018)
10.1039/c9cs00614a
State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol.
Jiawei Zhong (2020)
10.1016/J.CATTOD.2017.04.022
CO 2 reduction over Cu-ZnGaMO (M = Al, Zr) catalysts prepared by a sol-gel method: Unique performance for the RWGS reaction
X. Liu (2017)
10.1002/cctc.201700111
Facile Synthesis of Cu@CeO2 and Its Catalytic Behavior for the Hydrogenation of Methyl Acetate to Ethanol
Y. Wang (2017)
10.14478/ACE.2016.1109
Preparation of active Cu/ZnO-based catalysts for methanol synthesis
C. Jeong (2016)
10.1002/anie.201607600
Promoting the Synthesis of Methanol: Understanding the Requirements for an Industrial Catalyst for the Conversion of CO2.
M. Behrens (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar