Online citations, reference lists, and bibliographies.

Dry-jet Wet-spun PAN/MWCNT Composite Fibers With Homogeneous Structure And Circular Cross-section

Jian Zhang, Youwei Zhang, Degang Zhang, Jiongxin Zhao
Published 2012 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1002/PAT.625
A study on the orientation structure and mechanical properties of polyacrylonitrile precursors
Q. Xu (2005)
10.1166/JNN.2003.239
Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers.
M. Weisenberger (2003)
10.1016/S0008-6223(98)00130-4
Dispersion and packing of carbon nanotubes
M. P. Shaffer (1998)
10.1002/PC.20868
Influence of modified carbon nanotube on physical properties and crystallization behavior of poly(ethylene terephthalate) nanocomposite
J. Kim (2009)
10.1016/0008-6223(96)83349-5
Chemical treatment of carbon nanotubes
K. Esumi (1996)
10.1016/0008-6223(81)90023-3
Surface oxide structures on a commercial activated carbon
C. Ishizaki (1981)
10.1002/ADMA.200305456
Polyacrylonitrile Single‐Walled Carbon Nanotube Composite Fibers
T. V. Sreekumar (2004)
10.1002/APP.10973
Structure development during dry–jet–wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers
P. Bajaj (2002)
10.1021/JA048648P
Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets.
J. Ge (2004)
10.1016/J.POLYMER.2006.03.050
Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile
Han Gi Chae (2006)
10.1016/S0032-3861(00)00583-8
Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers
P. Bajaj (2001)
10.1002/APP.27286
The skin‐core structure of poly(acrylonitrile‐itaconic acid) precursor fibers in wet‐spinning
H. Ge (2008)
10.1021/JA021167Q
Covalent sidewall functionalization of single wall carbon nanotubes.
R. K. Saini (2003)
10.1007/S00289-011-0525-9
Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: effects of the non-solvent species
Jian Zhang (2011)
10.1038/363603a0
Single-shell carbon nanotubes of 1-nm diameter
S. Iijima (1993)
10.1002/APP.31414
Effect of spinning conditions on the mechanical properties of polyacrylonitrile fibers modified with carbon nanotubes
T. Mikołajczyk (2010)
10.1016/0008-6223(95)00007-Z
Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index
H. Ogawa (1995)
10.1023/A:1012313417438
Thermoreversible Gels as Precursors of Polyacrylonitrile Fibres
V. I. Gerasimov (2001)
10.1021/JA010172B
Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.
R. J. Chen (2001)
10.1016/J.CARBON.2007.02.015
Oxidative stabilization of polyacrylonitrile in the presence of functionalized carbon nanotubes
T. V. Sreekumar (2007)
10.1002/POLB.21528
Viscometric measurement of the thermodynamics of PAN terpolymer/DMSO/water system and effect of fiber-forming conditions on the morphology of PAN precursor
R. Dong (2008)
10.1016/J.CARBON.2004.10.034
Oxidative stabilization of PAN/SWNT composite fiber
B. G. Min (2005)
10.1166/JNN.2008.AN53
Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.
Sureshkumar Kanagaraj (2008)
10.1021/CR970102G
Nanotubes from Carbon.
P. Ajayan (1999)
10.1007/S00289-006-0717-X
Study on the Coagulation Process of Polyacrylonitrile Nascent Fibers during Wet-spinning
Xing-guang Dong (2007)
10.1016/J.POLYMER.2007.09.032
Polymer-nanoinclusion interactions in carbon nanotube based polyacrylonitrile extruded and electrospun fibers
Linda Vaisman (2007)
10.1016/J.PROGPOLYMSCI.2004.08.001
Polymers containing fullerene or carbon nanotube structures
C. Wang (2004)
10.1002/ADFM.200305034
Composites of Polyacrylonitrile and Multiwalled Carbon Nanotubes Prepared by Gelation/Crystallization from Solution†
Ai Koganemaru (2004)
10.1038/354056a0
Helical microtubules of graphitic carbon
S. Iijima (1991)
10.1002/APP.31020
Investigation the jet stretch in PAN fiber dry‐jet wet spinning for PAN‐DMSO‐H2O system
Xiaomei Zeng (2009)
10.1002/POLB.21600
Influences of nonsolvent and temperature on critical viscoelastic behaviors of ternary polyacrylonitrile solutions around the sol-gel threshold
C. Ma (2008)
10.1021/MA990334C
Uniaxial Drawing of Isotactic Poly(acrylonitrile): Development of Oriented Structure and Tensile Properties
D. Sawai (1999)
10.1016/S0008-6223(03)00391-9
Evolution of structure and properties of PAN precursors during their conversion to carbon fibers
Zhang Wang-xi (2003)
10.1016/J.COMPSCITECH.2010.02.013
The influence of carbon nanotubes on the PVC glass transition temperature
Tomasz Sterzyński (2010)
10.1021/jp809701b
Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution during thermal-induced gelation.
Lianjiang Tan (2009)
10.1016/S0008-6223(02)00286-5
Reduction of solubilized multi-walled carbon nanotubes
Luqi Liu (2003)
10.1002/APP.12275
Effect of coagulation conditions on properties of poly(acrylonitrile–carboxylic acid) fibers
S. H. Bahrami (2003)
10.1016/J.POLYMER.2005.08.092
A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber
Han Gi Chae (2005)
10.1126/SCIENCE.282.5386.95
Solution properties of single-walled carbon nanotubes
Chen (1998)
10.1515/POLYENG.1995.15.3-4.327
The Role of Macromolecular Entanglements in the Gel Spinning Process and Properties of High Performance Polyacrylonitrile Fibers
B. Qian (1995)
10.1021/JP044741O
Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes.
V. Skákalová (2005)
10.1016/J.POLYMER.2006.03.067
Development of oriented morphology and tensile properties upon superdawing of solution-spun fibers of ultra-high molecular weight poly(acrylonitrile)
D. Sawai (2006)
10.1002/polb.1994.090320616
Co‐crystallization of solvents with polymers: The x‐ray diffraction behavior of solvent‐containing and solvent‐free polyacrylonitrile
Z. Bashir (1994)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar