Online citations, reference lists, and bibliographies.

Unique Features Of DNA Replication In Mitochondria: A Functional And Evolutionary Perspective

I. Holt, H. T. Jacobs
Published 2014 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Last year, we reported a new mechanism of DNA replication in mammals. It occurs inside mitochondria and entails the use of processed transcripts, termed bootlaces, which hybridize with the displaced parental strand as the replication fork advances. Here we discuss possible reasons why such an unusual mechanism of DNA replication might have evolved. The bootlace mechanism can minimize the occurrence and impact of single‐strand breaks that would otherwise threaten genome stability. Furthermore, by providing an implicit mismatch recognition system, it should limit the occurrence of replication‐dependent deletions and insertions, and defend against invading elements. Such a mechanism may also limit attempts to manipulate the mammalian mitochondrial genome.
This paper references
10.1038/newbio241103a0
Unidirectionality of replication in mouse mitochondrial DNA.
H. Kasamatsu (1973)
10.1007/s00425-012-1802-z
The amount and integrity of mtDNA in maize decline with development
D. J. Oldenburg (2012)
10.1016/0092-8674(82)90049-6
Replication of animal mitochondrial DNA
D. Clayton (1982)
Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis
NG Larsson (1998)
10.1016/S1097-2765(02)00571-3
Multiple mitochondrial DNA polymerases in Trypanosoma brucei.
M. Klingbeil (2002)
10.1038/sj.emboj.7601392
Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand
T. Yasukawa (2006)
10.1083/jcb.200712101
Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation
R. W. Gilkerson (2008)
10.4161/cc.9.13.12122
What happens when replication and transcription complexes collide?
Richard T Pomerantz (2010)
10.1093/hmg/ddn359
Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling
S. Goffart (2009)
10.1371/journal.pone.0060768
Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi
Denis Beaudet (2013)
10.1073/pnas.83.19.7363
Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize.
Kathleen J. Newton (1986)
10.1615/CRITREVEUKARGENEEXPR.V20.I3.10
Genome instability in the context of chromatin structure and fragile sites.
E. Bártová (2010)
10.1074/jbc.M111.252460
Ribonucleotide Discrimination and Reverse Transcription by the Human Mitochondrial DNA Polymerase*
R. Kasiviswanathan (2011)
10.1016/S0091-679X(06)80026-9
Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria.
N. Bonnefoy (2007)
10.1093/nar/gkt988
Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication
Nina Rajala (2014)
10.1083/jcb.200609158
The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization
J. He (2007)
10.1074/JBC.275.15.11207
Very Rare Complementation between Mitochondria Carrying Different Mitochondrial DNA Mutations Points to Intrinsic Genetic Autonomy of the Organelles in Cultured Human Cells*
J. Enríquez (2000)
10.1093/NAR/28.19.3779
A pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile).
T. Yasukawa (2000)
10.1016/0092-8674(77)90286-0
Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle
D. Bogenhagen (1977)
10.1093/HMG/DDH326
Heterologous mitochondrial DNA recombination in human cells.
M. D'Aurelio (2004)
10.1128/MCB.01834-08
Human Dna2 Is a Nuclear and Mitochondrial DNA Maintenance Protein
Julien P. Duxin (2009)
10.1093/BRAIN/AWL097
The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases.
C. Tzoulis (2006)
10.1073/pnas.75.8.3841
Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize.
B. Forde (1978)
10.1016/j.biochi.2013.09.016
The plant mitochondrial genome: dynamics and maintenance.
J. Gualberto (2014)
10.1371/journal.pone.0053249
Analysis of Replication Intermediates Indicates That Drosophila melanogaster Mitochondrial DNA Replicates by a Strand-Coupled Theta Mechanism
Priit Jõers (2013)
10.1016/j.cmet.2013.02.006
The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression.
H. Antonicka (2013)
10.1093/nar/gks266
Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis
J. He (2012)
10.1128/MCB.00770-06
DNA Recombination-Initiation Plays a Role in the Extremely Biased Inheritance of Yeast [rho−] Mitochondrial DNA That Contains the Replication Origin ori5
F. Ling (2006)
10.1074/JBC.M400283200
Physiological and Biochemical Defects in Functional Interactions of Mitochondrial DNA Polymerase and DNA-binding Mutants of Single-stranded DNA-binding Protein*
C. Farr (2004)
10.1038/nature11233
Landscape of transcription in human cells
S. Djebali (2012)
10.1038/331717a0
Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies
I. Holt (1988)
10.1074/jbc.M111.309468
Human Mitochondrial DNA Helicase TWINKLE Is Both an Unwinding and Annealing Helicase*
D. Sen (2012)
10.1146/annurev.biochem.052308.093131
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.
M. Lieber (2010)
10.1093/brain/awr261
Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options.
Jessica Nouws (2012)
Mutations in DNA 2 link progressive myopathy to mitochondrial DNA instabil
D Ronchi (2013)
Mouse L
D Bogenhagen (1977)
10.1074/jbc.M308028200
Mammalian Mitochondrial DNA Replicates Bidirectionally from an Initiation Zone*
Mark Bowmaker (2003)
10.1016/S1097-2765(03)00088-1
Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice.
S. Cerritelli (2003)
Out of S-phase: shift of subunits for ribonucleotide reduction
G Pontarin (2012)
10.1128/MCB.12.2.480
Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes.
M. P. King (1992)
10.1093/HMG/DDI435
Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression.
Milana Koulintchenko (2006)
10.1093/NAR/GKG167
Mismatch repair activity in mammalian mitochondria.
P. Mason (2003)
10.1534/g3.111.000554
Replication Stress-Induced Chromosome Breakage Is Correlated with Replication Fork Progression and Is Preceded by Single-Stranded DNA Formation
W. Feng (2011)
10.1101/cshperspect.a016097
The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria.
M. Gray (2014)
10.1128/MCB.00457-08
Removal of Oxidative DNA Damage via FEN1-Dependent Long-Patch Base Excision Repair in Human Cell Mitochondria
P. Liu (2008)
10.1074/JBC.M400021200
Reconstitution of F Factor DNA Replication in Vitro with Purified Proteins*
S. Zzaman (2004)
10.1126/SCIENCE.1083430
Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes
L. Zou (2003)
10.1093/HMG/DDI184
Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis.
N. Hance (2005)
10.1371/journal.pgen.1003800
Mitochondrial Transcription Terminator Family Members mTTF and mTerf5 Have Opposing Roles in Coordination of mtDNA Synthesis
Priit Jõers (2013)
10.1016/j.jmb.2010.02.029
Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid.
J. Pohjoismäki (2010)
10.1016/S0092-8674(00)80688-1
Coupled Leading- and Lagging-Strand Synthesis of Mammalian Mitochondrial DNA
I. Holt (2000)
10.1038/90058
Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria
J. N. Spelbrink (2001)
10.1074/jbc.M801342200
Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development*
C. Adán (2008)
10.1038/NG0398-231
Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice
N. Larsson (1998)
10.1016/j.siny.2011.04.011
Mitochondrial DNA mutations and depletion in pediatric medicine.
A. Spinazzola (2011)
The mitochondrial RNABioessays 36: 102 binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression
H Antonicka (2013)
10.1093/NAR/GKM676
The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA
Anne K. Hyvärinen (2007)
10.1016/j.molcel.2013.09.025
PrimPol, an Archaic Primase/Polymerase Operating in Human Cells
Sara García-Gómez (2013)
10.1196/ANNALS.1395.024
Mitochondrial DNA mutations and aging.
K. J. Krishnan (2007)
10.1074/JBC.M411916200
Bidirectional Replication Initiates at Sites Throughout the Mitochondrial Genome of Birds*
A. Reyes (2005)
10.1016/j.cmet.2013.02.005
GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules
Alexis A Jourdain (2013)
10.1093/hmg/dds506
Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance.
Margaret M. Humble (2013)
10.1093/nar/gkp614
The accessory subunit of mitochondrial DNA polymerase γ determines the DNA content of mitochondrial nucleoids in human cultured cells
M. Di Re (2009)
10.1038/sj.embor.7400878
Herpes simplex virus eliminates host mitochondrial DNA
H. Saffran (2007)
10.1038/290457a0
Sequence and organization of the human mitochondrial genome
S. Anderson (1981)
10.1074/jbc.M109.016600
Human Heart Mitochondrial DNA Is Organized in Complex Catenated Networks Containing Abundant Four-way Junctions and Replication Forks*
J. Pohjoismäki (2009)
10.1371/journal.pgen.1000175
Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms
Celia Payen (2008)
10.1016/j.tibs.2009.03.007
Mitochondrial DNA replication and repair: all a flap.
I. Holt (2009)
10.1016/S0092-8674(02)01075-9
Biased Incorporation of Ribonucleotides on the Mitochondrial L-Strand Accounts for Apparent Strand-Asymmetric DNA Replication
M. Y. Yang (2002)
Mitochondrial nucleoids maintain genetic autonomy but allow for 4–1031
RW Gilkerson (2008)
10.1016/J.BBAEXP.2004.12.006
Transcription arrest caused by long nascent RNA chains.
T. Bentin (2005)
10.1101/gad.184697.111
DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase.
N. Sabouri (2012)
10.1016/j.ajhg.2012.12.014
Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability.
D. Ronchi (2013)
10.1016/S1097-2765(00)80241-5
Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha.
J. Walter (2000)
10.1007/s00122-008-0790-7
The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element
P. McDermott (2008)
10.1093/nar/gkt196
Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts
A. Reyes (2013)
10.1074/jbc.274.21.14779
Functional Interactions of Mitochondrial DNA Polymerase and Single-stranded DNA-binding Protein
C. Farr (1999)
10.1186/1741-7007-2-9
The functional organization of mitochondrial genomes in human cells
F. Iborra (2003)
10.1016/j.bbamcr.2010.04.008
Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation.
Heini Ruhanen (2010)



This paper is referenced by
10.1093/nar/gky852
Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication
Tricia J. Cluett (2018)
10.1093/jb/mvy058
An overview of mammalian mitochondrial DNA replication mechanisms
T. Yasukawa (2018)
10.1002/bies.201800102
Known Unknowns of Mammalian Mitochondrial DNA Maintenance
Jaakko L. O. Pohjoismäki (2018)
10.1016/j.gde.2016.03.005
Human mitochondrial DNA replication machinery and disease.
Matthew J. Young (2016)
10.1091/mbc.E15-06-0390
Low doses of ultraviolet radiation and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, fork regression, and replication initiation shift
R. Torregrosa-Muñumer (2015)
10.1042/EBC20170100
Mitochondrial DNA replication in mammalian cells: overview of the pathway
M. Falkenberg (2018)
10.1590/1678-4685-GMB-2019-0069
Roles of the mitochondrial replisome in mitochondrial DNA deletion formation
M. T. Oliveira (2020)
10.3389/fncel.2017.00325
Towards the Prevention of Aminoglycoside-Related Hearing Loss
M. O'Sullivan (2017)
10.1158/0008-5472.CAN-15-3243
Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.
Annahita Sallmyr (2016)
10.1186/s12929-016-0255-2
Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity
Han-Zen Tsai (2016)
10.1186/s12864-016-3047-x
The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers
W. Phillips (2016)
10.7124/BC.000927
Mechanisms of DNA repair in mitochondria
Anastasia S Singatulina (2016)
10.1093/nar/gky094
Structural rearrangements in the mitochondrial genome of Drosophila melanogaster induced by elevated levels of the replicative DNA helicase
G. Ciesielski (2018)
10.1002/bies.201400164
Replication of mitochondrial DNA: The art of staying paired to avoid dangerous changes (comment on DOI 10.1002/bies.201400052)
M. Ricchetti (2014)
10.1038/s41598-019-45244-6
Replication fork rescue in mammalian mitochondria
R. Torregrosa-Muñumer (2019)
10.1016/j.dnarep.2019.06.001
The Jekyll and Hyde character of RNase H1 and its multiple roles in mitochondrial DNA metabolism.
Ian J. Holt (2019)
Generating mammalian mitochondrial disease models with mitochondrial DNA mutations
Johanna H K Kauppila (2018)
10.1007/978-1-4939-3040-1
Mitochondrial DNA
Matthew McKenzie (2016)
10.1093/nar/gkw648
Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity
Benedict G. Tan (2016)
10.1007/978-1-4939-3040-1_8
Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.
I. Holt (2016)
10.1016/j.bbamcr.2014.12.041
Mitochondrial quality control: Easy come, easy go.
A. Stotland (2015)
10.1007/978-3-319-28755-3_6
Chargaff’s Cluster Rule
Donald R. Forsdyke (2016)
10.1146/annurev-biochem-060815-014402
Maintenance and Expression of Mammalian Mitochondrial DNA.
C. Gustafsson (2016)
10.1016/j.bbadis.2018.09.035
Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease.
E. S. Chocrón (2019)
10.1134/S0006297919080042
DNA Replication in Human Mitochondria
L. A. Zinovkina (2019)
10.1007/s10545-015-9831-y
Spectrum of combined respiratory chain defects
J. Mayr (2015)
Semantic Scholar Logo Some data provided by SemanticScholar