Online citations, reference lists, and bibliographies.

Electrochemical Conversion Of CO2 Into Negative Electrode Materials For Li‐Ion Batteries

Jianbang Ge, L. Hu, W. Wang, H. Jiao, S. Jiao
Published 2015 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
The capture and electrochemical conversion of CO2 in molten LiCl–Li2CO3 salt is proposed. By using an inert platinum anode and a tungsten cathode, the CO32− could be easily converted into carbon and oxygen gas, as well as O2−. The released O2− was responsible for the further capture of CO2. Also, CO2 could be effectively absorbed in such chloride melts with a low content of oxygen ion dissolved. In addition, the produced carbon displayed good performance as a negative electrode material for Li-ion batteries, suggesting that the process is an environmentally friendly way to convert CO2 into energy-storage materials.
This paper references
10.1126/science.1176731
Amine Scrubbing for CO2 Capture
G. Rochelle (2009)
10.1023/A:1003927100308
Electrodeposition of cohesive carbon films on aluminum in a LiCl–KCl–K2CO3 melt
H. Kawamura (2000)
10.1021/CR068357U
Transformation of carbon dioxide.
T. Sakakura (2007)
10.1039/b804323j
Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels.
Eric E Benson (2009)
10.1016/J.CARBON.2014.02.052
Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties
Happiness V. Ijije (2014)
10.1016/J.TSF.2012.07.056
Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3
Qiushi Song (2012)
10.1021/JZ100829S
A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture
Stuart Licht (2010)
10.1016/S0013-4686(97)00141-2
CO2 reduction in molten 62/38 mole% Li/K carbonate mixture
W.H.A. Peele (1998)
10.1016/J.PHYSE.2007.10.069
Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization
I. Novoselova (2008)
10.1016/0013-4686(66)80076-2
The electrolytic deposition of carbon from fused carbonates
M. Ingram (1966)
10.1149/2.016211JES
Titanium carbide coating of titanium by cathodic deposition from a carbonate melt
Valery Kaplan (2012)
10.1016/J.ELECTACTA.2010.05.072
A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
Pallavi Verma (2010)
10.4209/AAQR.2012.05.0132
A Review of CO2 Capture by Absorption and Adsorption
Cheng-Hsiu Yu (2012)
10.1021/nl3016957
Sodium ion insertion in hollow carbon nanowires for battery applications.
Yuliang Cao (2012)
10.1149/1.2426627
Electrochemical Studies in Molten Li2 CO 3 ‐ Na2 CO 3
H. Bartlett (1967)
10.1039/C3EE24132G
Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis
H. Yin (2013)
10.1016/J.JCLEPRO.2012.03.013
Assessment of CO2 Capture Technologies in Cement Manufacturing Process
K. Vatopoulos (2012)
10.1016/S0167-7322(99)00090-2
MECHANISM FOR ELEMENTAL CARBON FORMATION IN MOLECULAR IONIC LIQUIDS
F. Lantelme (1999)
10.1016/J.ELECTACTA.2009.03.049
Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates
K. L. Van (2009)
10.1149/1.1531490
Lithium Insertion into Carbonaceous Anode Materials Prepared by Electrolysis of Molten Li-K-Na Carbonates
Henri Groult (2003)
10.1016/J.SSI.2006.01.051
Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries
Henri Groult (2006)
10.1016/J.ELECTACTA.2013.10.109
Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode
Diyong Tang (2013)
10.1149/1.1464884
Synthesis and structural characterization of carbon powder by electrolytic reduction of molten Li2CO3-Na2CO3-K2CO3
B. Kaplan (2002)
10.1039/C004106H
An overview of CO2 capture technologies
N. Macdowell (2010)
10.1016/J.PECS.2012.03.003
The outlook for improved carbon capture technology
E. Rubin (2012)
10.1016/S0013-4686(02)00047-6
Electrodeposition of carbon films from molten alkaline fluoride media
L. Massot (2002)
10.1039/B912904A
The teraton challenge. A review of fixation and transformation of carbon dioxide
M. Mikkelsen (2010)
10.1016/J.IJHYDENE.2014.03.113
Thermodynamic and experimental approach of electrochemical reduction of CO2 in molten carbonates
D. Chery (2014)
10.1149/1.3308596
Conversion of CO2 to CO by Electrolysis of Molten Lithium Carbonate
Valery Kaplan (2010)
10.1016/S0013-4686(02)00646-1
Studies of carbon nucleation phenomena in molten alkaline fluoride media
L. Massot (2003)
10.1063/1.1674108
Raman Spectrum of Graphite
F. Tuinstra (1970)



This paper is referenced by
10.1039/c5fd00234f
Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.
B. Deng (2016)
10.1039/c5fd00217f
An investigation into the carbon nucleation and growth on a nickel substrate in LiCl-Li2CO3 melts.
Jianbang Ge (2016)
10.1016/J.APSUSC.2015.04.119
Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts
Jianbang Ge (2015)
10.1021/ACS.CHEMMATER.7B00824
Robust Benzimidazole-Based Electrolyte Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion Batteries
Fu-ming Wang (2017)
10.1016/J.CARBON.2018.12.049
The synthesis of sulfur-doped graphite nanostructures by direct electrochemical conversion of CO2 in CaCl2NaClCaOLi2SO4
Liwen Hu (2019)
10.1016/J.ELECTACTA.2017.11.025
Electrolytic synthesis of carbon from the captured CO2 in molten LiCl–KCl–CaCO3: Critical roles of electrode potential and temperature for hollow structure and lithium storage performance
B. Deng (2018)
10.1016/J.CARBON.2015.11.065
Electrochemical deposition of carbon in LiCl–NaCl–Na2CO3 melts
Jianbang Ge (2016)
10.1016/J.ELECTACTA.2017.09.053
Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt
Zhigang Chen (2017)
10.1149/2.0091706JES
Electrochemical Deposition of Carbon Prepared on Cu and Ni Cathodes in CaCl2-LiCl Melts
Jianbang Ge (2017)
10.1002/9781119231059.CH6
Electrochemical Valorization of Carbon Dioxide in Molten Salts
H. Yin (2018)
10.1016/J.JPOWSOUR.2016.12.037
The lithium storage performance of electrolytic-carbon from CO 2
Juanjuan Tang (2017)
10.1016/J.CARBON.2016.09.035
Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts
X. Mao (2017)
10.1149/2.1101805JES
In Situ Monitoring of O2− Concentration in Molten NaCl-KCl at 750°C
Jianxun Song (2018)
10.1039/C7TA00258K
Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts
L. Hu (2017)
10.1002/ADSU.201700047
Flue‐Gas‐Derived Sulfur‐Doped Carbon with Enhanced Capacitance
Z. Chen (2017)
10.1149/2.0401610JES
Solubility of Oxide Ion in Molten Chloride and Carbonate Containing Li, Na, K and/or Ca Added with Li2O or CaO
Jianbang Ge (2016)
10.1039/C7TA03606J
Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2
B. Deng (2017)
10.1016/J.COELEC.2019.04.011
Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process
Rui Jiang (2019)
10.3389/fenrg.2015.00043
Overview on CO2 Valorization: Challenge of Molten Carbonates
D. Chery (2015)
10.1039/C5TA05127D
Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts
L. Hu (2015)
Semantic Scholar Logo Some data provided by SemanticScholar