Online citations, reference lists, and bibliographies.
← Back to Search

Nature Of Bonding In Donor-Acceptor Interactions Exemplified By Complexes Of N-Heterocyclic Carbenes With 1,2,5-Telluradiazoles.

N. Pushkarevsky, P. Petrov, Denis S Grigoriev, A. I. Smolentsev, L. M. Lee, Florian Kleemiss, G. E. Salnikov, Sergey N Konchenko, I. Vargas-Baca, Simon Grabowsky, J. Beckmann, A. Zibarev
Published 2017 · Medicine, Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
Comprehensive structural, spectroscopic, and quantum chemical analyses of new donor-acceptor complexes between N-heterocyclic carbenes and 1,2,5-telluradiazoles and a comparison with previously known complexes involving tellurenyl cations showed that the dative C-Te bonds cannot be solitarily described with only one Lewis formula. Canonical Lewis formulas that denote covalency and arrows emphasizing ionicity complement each other in varying extents. Evaluation of the relative weights of these resonance forms requires proper bonding description with a well-balanced toolbox of analytical methods. If for conciseness only, one resonance form is used, it must be the most significant one according to the analytical evaluation. If unclear, all significant resonance forms should be displayed.
This paper references
10.1039/C39850000548
The role of bivalent tin compounds in platinum co-ordination chemistry; X-ray structure of [Pt{Sn(NR′2)2}3], trans-[(Pt(µ-Cl)(PEt3){SnCl(NR′2)2})2], and (SnClR2)2[R = CH(SiMe3)2, R′= SiMe3]
T. A. Al-Allaf (1985)
10.1002/ANGE.201300461
Dative Bindungen bei Hauptgruppenelementverbindungen: ein Plädoyer für weniger Pfeile
D. Himmel (2014)
10.1063/1.1740589
Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies
R. S. Mulliken (1955)
10.1039/c5cs00815h
Donor-acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C-Sn.
G. Frenking (2016)
10.1007/S002140100268
A quantitative measure of bond polarity from the electron localization function and the theory of atoms in molecules
S. Raub (2001)
10.1063/1.449486
Natural population analysis
A. Reed (1985)
10.1021/IC50197A006
Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method
T. Ziegler (1979)
10.1016/0040-4020(68)88057-3
Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane
K. Wiberg (1968)
10.1007/S002140050353
Towards an order-N DFT method
C. Fonseca Guerra (1998)
10.1139/V96-126
Quantum chemical valence indices from the one-determinantal difference approach
R. Nalewajski (1996)
10.1002/chem.200901000
Lewis base sequestered chalcogen dihalides: synthetic sources of ChX2 (Ch = Se, Te; X = Cl, Br).
Jason L Dutton (2009)
10.1063/1.1741876
Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations
R. S. Mulliken (1955)
10.1002/anie.201403078
Dative or not dative?
D. Himmel (2014)
10.1021/JA044005Y
The nature of the supramolecular association of 1,2,5-chalcogenadiazoles.
A. Cozzolino (2005)
10.1002/HC.20090
Reaction of tellurium tetraiodide with 2,3‐dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene
N. Kuhn (2005)
10.1002/ANGE.201403078
Dativ oder nicht dativ
D. Himmel (2014)
10.1002/EJIC.201201439
Chalcogen–Nitrogen Secondary Bonding Interactions in the Gas Phase – Spectrometric Detection of Ionized Benzo-2,1,3-telluradiazole Dimers
A. Cozzolino (2013)
10.1002/anie.200901495
Tellurium(II)-centered dications from the pseudohalide "Te(OTf)2".
J. L. Dutton (2009)
10.1002/ANGE.19891010806
Kovalente und dative Bindungen zu Hauptgruppenmetallen, eine nützliche Unterscheidung
A. Haaland (2006)
10.1002/EJIC.201200376
Tellurium–Nitrogen π‐Heterocyclic Chemistry – Synthesis, Structure, and Reactivity Toward Halides and Pyridine of 3,4‐Dicyano‐1,2,5‐telluradiazole
N. Semenov (2012)
10.1021/OM5006403
Coordination of Halide and Chalcogenolate Anions to Heavier 1,2,5-Chalcogenadiazoles: Experiment and Theory
N. Semenov (2014)
10.1002/ANIE.198909921
Covalent versus Dative Bonds to Main Group Metals, a Useful Distinction
A. Haaland (1989)
10.1002/QUA.10768
A Measure of Electron Localizability
M. Kohout (2004)
10.1126/science.1160768
A Stable Silicon(0) Compound with a Si=Si Double Bond
Yuzhong Wang (2008)
10.1021/IC950154T
Preparation, Crystal Structures, and Isomerization of the Tellurium Diimide Dimers RNTe(&mgr;-NR')(2)TeNR (R = R' = (t)Bu; R = PPh(2)NSiMe(3), R' = (t)Bu, (t)Oct): X-ray Structure of the Telluradiazole Dimer [(t)Bu(2)C(6)H(2)N(2)Te](2).
T. Chivers (1996)
10.1021/ct800503d
A Combined Charge and Energy Decomposition Scheme for Bond Analysis.
M. Mitoraj (2009)
10.1021/ja512183e
Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases.
Graham E Garrett (2015)
10.1007/BF00549096
Bonded-atom fragments for describing molecular charge densities
F. L. Hirshfeld (1977)
10.1039/c7dt00186j
N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH+, X = S, Se, Te).
L. Liu (2017)
10.1039/c7fd00075h
Building new discrete supramolecular assemblies through the interaction of iso-tellurazole N-oxides with Lewis acids and bases.
Peter C. Ho (2017)
10.1002/anie.201311022
Dative bonds in main-group compounds: a case for more arrows!
G. Frenking (2014)
10.1016/J.CCR.2017.03.026
Dative bonding in main group compounds
Lili Zhao (2017)
10.1002/jcc.1056
Chemistry with ADF
G. T. Velde (2001)
10.1002/anie.201300461
Dative bonds in main-group compounds: a case for fewer arrows!
D. Himmel (2014)
10.1021/IC50196A034
A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method
T. Ziegler (1979)
10.1021/CG101060S
Engineering Second-Order Nonlinear Optical Activity by Means of a Noncentrosymmetric Distortion of the [Te-N]2 Supramolecular Synthon
A. Cozzolino (2010)
10.1039/c5dt04106f
25 years of N-heterocyclic carbenes: activation of both main-group element-element bonds and NHCs themselves.
Sabrina Würtemberger-Pietsch (2016)
10.1063/1.1740588
Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I
R. S. Mulliken (1955)
10.1021/JA00859A001
Spatial localization of the electronic pair and number distributions in molecules
R. Bader (1975)
10.1021/CG100951Y
Parametrization of a Force Field for Te−N Secondary Bonding Interactions and Its Application in the Design of Supramolecular Structures Based on Heterocyclic Building Blocks
A. Cozzolino (2011)
10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U
Natural resonance theory: II. Natural bond order and valency
E. Glendening (1998)
10.1007/s11172-015-0893-7
Donor-acceptor coordination of anions by chalcogen atoms of 1,2,5-chalcogenadiazoles
Nikolay A Semenov (2015)
10.1002/EJIC.200800038
Aryltellurenyl Cation [RTe(CR'2)]+ Stabilized by an N-Heterocyclic Carbene
J. Beckmann (2008)
10.1021/CG050260Y
The effect of steric hindrance on the association of telluradiazoles through Te-N secondary bonding interactions
A. Cozzolino (2006)
10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T
Natural resonance theory: III. Chemical applications
E. Glendening (1998)
10.1021/ja107252f
Supramolecular chromotropism of the crystalline phases of 4,5,6,7-tetrafluorobenzo-2,1,3-telluradiazole.
A. Cozzolino (2010)
10.1002/jcc.23852
Estimating π binding energy of N‐Heterocyclic carbenes: The role of polarization
E. Rezabal (2015)
10.1021/CR00088A005
Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
A. Reed (1988)
10.1016/J.CCR.2010.12.015
A survey of tellurium-centered secondary-bonding supramolecular synthons
A. Cozzolino (2011)
10.1002/anie.200901766
Lewis base stabilized dichlorosilylene.
Rajendra S Ghadwal (2009)
10.1039/C39850000863
Homoleptic, three-co-ordinate group 8c noble metal(0) complexes having GeII or SnII ligands, [M{M′(NR2)2}3](M = Pd or Pt, M′= Ge or Sn, R = SiMe3), and the X-ray structure of one of them (M = Pd, M′= Sn)
P. Hitchcock (1985)
10.1007/S00214-007-0282-X
A definition for the covalent and ionic bond index in a molecule
M. Gould (2008)
10.1016/0009-2614(83)80005-0
Charge, bond order and valence in the AB initio SCF theory
I. Mayer (1983)
EXPLORING BONDING PATTERNS OF MOLECULAR SYSTEMS USING QUANTUM MECHANICAL BOND MULTIPLICITIES
J. Mrozek (1998)
10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
Two-electron valence indices from the Kohn-Sham orbitals
R. Nalewajski (1997)
10.1002/ANGE.201311022
Dative Bindungen bei Hauptgruppenelementverbindungen: ein Plädoyer für mehr Pfeile
G. Frenking (2014)
10.1063/1.1741877
Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories
R. S. Mulliken (1955)
10.1007/S00214-007-0396-1
Electron localizability indicator for correlated wavefunctions. III: singlet and triplet pairs
M. Kohout (2008)
10.1002/QUA.560510403
Modified valence indices from the two‐particle density matrix
R. Nalewajski (1994)
10.1021/jp800139g
Bond multiplicity in transition-metal complexes: applications of two-electron valence indices.
A. Michalak (2008)
10.1002/anie.200902431
SiBr2(Idipp): a stable N-heterocyclic carbene adduct of dibromosilylene.
A. C. Filippou (2009)
10.1007/BF02401406
On the calculation of bonding energies by the Hartree Fock Slater method
T. Ziegler (1977)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar