Online citations, reference lists, and bibliographies.
← Back to Search

Classification And Basic Properties Of Contrast Agents For Magnetic Resonance Imaging.

C. Geraldes, S. Laurent
Published 2009 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
A comprehensive classification of contrast agents currently used or under development for magnetic resonance imaging (MRI) is presented. Agents based on small chelates, macromolecular systems, iron oxides and other nanosystems, as well as responsive, chemical exchange saturation transfer (CEST) and hyperpolarization agents are covered in order to discuss the various possibilities of using MRI as a molecular imaging technique. The classification includes composition, magnetic properties, biodistribution and imaging applications. Chemical compositions of various classes of MRI contrast agents are tabulated, and their magnetic status including diamagnetic, paramagnetic and superparamagnetic are outlined. Classification according to biodistribution covers all types of MRI contrast agents including, among others, extracellular, blood pool, polymeric, particulate, responsive, oral, and organ specific (hepatobiliary, RES, lymph nodes, bone marrow and brain). Various targeting strategies of molecular, macromolecular and particulate carriers are also illustrated.
This paper references
10.1021/AR020228M
PARACEST agents: modulating MRI contrast via water proton exchange.
S. Zhang (2003)
10.1148/RADIOL.2221010225
Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes.
M. Mack (2002)
10.1148/RADIOLOGY.175.2.2326474
Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.
R. Weissleder (1990)
10.1063/1.478435
Theory of proton relaxation induced by superparamagnetic particles
A. Roch (1999)
10.1021/JA0103647
pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation.
M. P. Lowe (2001)
10.1002/CMMI.114
Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.
T. Parac-Vogt (2006)
10.1002/mrm.21239
Passive catheter tracking during interventional MRI using hyperpolarized 13C
P. Magnusson (2007)
10.1039/A902238D
DEPENDENCE OF THE RELAXIVITY AND LUMINESCENCE OF GADOLINIUM AND EUROPIUM AMINO-ACID COMPLEXES ON HYDROGENCARBONATE AND PH
S. Aime (1999)
10.1002/CHEM.200305159
pH-sensitive modulation of the second hydration sphere in lanthanide(III) tetraamide-DOTA complexes: a novel approach to smart MR contrast media.
M. Woods (2003)
10.1002/mrm.10106
Paramagnetic Lanthanide(III) complexes as pH‐sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications
S. Aime (2002)
10.1148/RADIOLOGY.195.2.7724772
Clinical results with Resovist: a phase 2 clinical trial.
P. Reimer (1995)
10.1002/ANIE.200462566
Tunable imaging of cells labeled with MRI-PARACEST agents.
S. Aime (2005)
10.1148/RADIOLOGY.209.3.9844683
T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555 A: dependence on field strength and plasma concentration--preliminary clinical experience with dynamic T1-weighted MR imaging.
P. Reimer (1998)
10.1038/NM0598-623
Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging
D. A. Sipkins (1998)
10.1148/RADIOLOGY.198.3.8628887
Superparamagnetic iron oxide--enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions.
T. Vogl (1996)
10.1073/pnas.1733836100
Molecular imaging with endogenous substances
K. Golman (2003)
10.1002/1522-2586(200012)12:6<905::AID-JMRI14>3.0.CO;2-5
New generation of monomer‐stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: Preclinical results in rats and rabbits
M. Taupitz (2000)
10.1016/j.neuroimage.2006.05.009
A responsive MRI contrast agent to monitor functional cell status
U. Himmelreich (2006)
10.1021/IC0200390
Mechanistic studies of a calcium-dependent MRI contrast agent.
W. Li (2002)
10.1021/JA0424169
Rigid MIIL2Gd2III (M = Fe, Ru) complexes of a terpyridine-based heteroditopic chelate: a class of candidates for MRI contrast agents.
J. Costa (2005)
10.1002/MRM.1910050404
Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite
P. Gillis (1987)
10.1007/s003300000791
Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging
Y. Ni (2001)
10.1016/S0898-8838(05)57005-3
RELAXATION BY METAL-CONTAINING NANOSYSTEMS
R. Muller (2005)
10.1073/pnas.1733835100
Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR
J. H. Ardenkjær-Larsen (2003)
10.1006/JMRE.1998.1440
Detection of proton chemical exchange between metabolites and water in biological tissues.
V. Guivel-Scharen (1998)
Tesla Magnetic Resonance Imaging-targeted Nanoparticle and 1 . 53 βνα Tumors Using a Novel Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Updated
P. Winter (2003)
10.1016/S1076-6332(00)80064-1
Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies.
S. Fossheim (2000)
10.1021/JA053799T
MRI thermometry based on PARACEST agents.
S. Zhang (2005)
10.1007/s00330-003-1912-x
Currently used non-specific extracellular MR contrast media
M. F. Bellin (2003)
10.1002/mrm.21460
Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI
K. Golman (2008)
10.1002/jmri.10180
Insights into the use of paramagnetic Gd(III) complexes in MR‐molecular imaging investigations
S. Aime (2002)
10.1002/mrm.20793
Effect of the intracellular localization of a Gd‐based imaging probe on the relaxation enhancement of water protons
E. Terreno (2006)
10.1097/00004424-199205000-00004
Magnetic Resonance Imaging Detection of an Experimental Pulmonary Perfusion Deficit Using a Macromolecular Contrast Agent: Polylysine–Gadolinium-DTPA40
Y. Berthezène (1992)
10.1002/CHEM.200400369
Towards targeted MRI: new MRI contrast agents for sialic acid detection.
L. Frullano (2004)
10.1007/s00775-007-0247-5
Comprehensive investigation of the non-covalent binding of MRI contrast agents with human serum albumin
V. Henrotte (2007)
10.1016/J.CCR.2007.04.018
Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging
K. W. Chan (2007)
10.1002/1521-3773(20021115)41:22<4334::AID-ANIE4334>3.0.CO;2-1
Novel pH-reporter MRI contrast agents.
S. Aime (2002)
10.1016/0079-6565(90)80008-6
Field-cycling relaxometry of protein solutions and tissue: Implications for MRI
S. Koenig (1990)
10.1002/1521-3765(20000717)6:14<2609::AID-CHEM2609>3.0.CO;2-S
Non-covalent conjugates between cationic polyamino acids and GdIII chelates: a route for seeking accumulation of MRI-contrast agents at tumor targeting sites.
S. Aime (2000)
10.1021/BC990168D
Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide.
R. Bhorade (2000)
10.1063/1.3057238
The Principles of Nuclear Magnetism
A. Abragam (1961)
PROTEIN-BOUND METAL CHELATES
S. Aime (2001)
10.1039/B100405K
Gadolinium DO3A derivatives mimicking phospholipids; preparation and in vitro evaluation as pH responsive MRI contrast agents
R. Hovland (2001)
10.1002/(SICI)1522-2586(199909)10:3<314::AID-JMRI13>3.0.CO;2-Y
Contrast agents for MRA: Future directions
M. Knopp (1999)
10.1021/JA00252A049
Parahydrogen and synthesis allow dramatically enhanced nuclear alignment
C. R. Bowers (1987)
10.1002/NBM.945
Manganese‐enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations
A. Silva (2004)
10.1002/mrm.20072
Improved route for the visualization of stem cells labeled with a Gd‐/Eu‐Chelate as dual (MRI and fluorescence) agent
S. G. Crich (2004)
10.1097/00004424-199304001-00012
Research in Radiology Departments
B. Hillman (1993)
10.1016/0960-894X(94)80014-6
Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging
C. Wu (1994)
10.1002/(SICI)1522-2586(200005)11:5<488::AID-JMRI4>3.0.CO;2-V
NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography
Kenneth E. Kellar (2000)
10.1002/MRM.1910350504
A new ytterbium chelate as contrast agent in chemical shift imaging and temperature sensitive probe for MR spectroscopy
S. Aime (1996)
10.1002/mrm.20247
Perfusion assessment with bolus differentiation: A technique applicable to hyperpolarized tracers
E. Johansson (2004)
10.1002/MRM.1910320610
Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime
D. Yablonskiy (1994)
C Imaging — A New Diagnostic Platform
S. Månsson (2005)
10.1039/B100994J
Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent
K. Hanaoka (2001)
10.1097/01.rli.0000066814.82006.be
Comparison of Different Types of Blood Pool Agents (P792, MS325, USPIO) in a Rabbit MR Angiography-like Protocol
C. Corot (2003)
10.1063/1.436302
Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes
J. Freed (1978)
10.1002/jmri.10149
Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan®, (NC100150) for MRI of renal perfusion: Experimental study in an animal model
R. Bachmann (2002)
10.1016/J.MRI.2007.02.015
Relaxivity of Gd-based contrast agents on X nuclei with long intrinsic relaxation times in aqueous solutions.
R. V. van Heeswijk (2007)
10.1002/MRC.1208
Novel radical‐responsive MRI contrast agent based on paramagnetic liposomes
C. Gløgård (2003)
10.1016/0304-4165(82)90333-6
Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.
K. Thulborn (1982)
10.1097/00004424-199810000-00007
Polylysine-Gd-DTPAn and polylysine-Gd-DOTAn coupled to anti-CEA F(ab')2 fragments as potential immunocontrast agents. Relaxometry, biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma.
C. Curtet (1998)
10.1097/00004424-200212000-00011
Assessment of Gadobenate Dimeglumine for Magnetic Resonance Angiography: Phase I Studies
M. Knopp (2002)
10.1007/BF02668094
Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent
B. Misselwitz (2007)
Gadolinium ( III ) texaphyrin : A tumor Contrast Media Mol . Imaging 2009 , 4 1 – 23 Copyright # 2009 John selective radiation sensitizer that is detectable by MRI
SW Young (1996)
10.1002/JMRI.1880030128
Biodistribution and toxicity of MR imaging contrast media
A. Oksendal (1993)
10.1016/J.CCR.2006.03.015
High sensitivity lanthanide(III) based probes for MR-medical imaging
S. Aime (2006)
10.1016/S0898-8838(05)57004-1
Gd(III)-BASED CONTRAST AGENTS FOR MRI
S. Aime (2005)
10.1002/(SICI)1099-0682(200004)2000:4<625::AID-EJIC625>3.0.CO;2-2
Sulfonamide‐Functionalized Gadolinium DTPA Complexes as Possible Contrast Agents for MRI: A Relaxometric Investigation
P. Anelli (2000)
10.1016/S0730-725X(01)00380-0
pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies.
K. Løkling (2001)
10.1016/0730-725X(95)00024-B
Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil.
C. W. Jung (1995)
10.2174/1389201043376571
Dendrimer-based nanosized MRI contrast agents.
Hisataka Kobayashi (2004)
10.1002/mrm.20773
High resolution pHe imaging of rat glioma using pH‐dependent relaxivity
M. García-Martín (2006)
10.1002/mrm.10463
Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer‐poly(rU) model for nucleic acid delivery and pharmacology
Karim Snoussi (2003)
10.1002/CHIN.200835229
Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications
S. Laurent (2008)
10.1007/3-540-45733-X_3
Relaxivity of MRI Contrast Agents
É. Tóth (2002)
10.1006/JMRE.1999.1956
A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST).
K. M. Ward (2000)
10.1021/IC0603050
Auto-assembling of ditopic macrocyclic lanthanide chelates with transition-metal ions. Rigid multimetallic high relaxivity contrast agents for magnetic resonance imaging.
Jérôme Paris (2006)
10.1002/ANIE.200501473
Highly sensitive MRI chemical exchange saturation transfer agents using liposomes.
S. Aime (2005)
10.1002/mrm.10173
MRI of the lungs using hyperpolarized noble gases
H. Möller (2002)
10.1021/BC00001A008
Preparation and characterization of paramagnetic polychelates and their protein conjugates.
P. Sieving (1990)
10.1002/1521-3773(20020603)41:11<1919::AID-ANIE1919>3.0.CO;2-Q
The amide protons of an ytterbium(III) dota tetraamide complex act as efficient antennae for transfer of magnetization to bulk water.
S. Zhang (2002)
10.1002/(SICI)1521-3773(19991102)38:21<3192::AID-ANIE3192>3.0.CO;2-#
A Novel pH-Sensitive MRI Contrast Agent.
Zhang (1999)
10.1039/P19750000929
Reduction of 3,5-disubstituted pyridines to dihydropyridines
Evans Booker (1975)
10.1021/OL050208V
DTPA-bisamide-based MR sensor agents for peroxidase imaging.
M. Querol (2005)
10.1006/JMRE.2001.2356
TmDOTA-: a sensitive probe for MR thermometry in vivo.
C. Zuo (2001)
10.1002/mrm.20048
Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments
J. Zhou (2004)
Can receptors be imaged with MRI agents?
A. Nunn (1997)
10.1021/IC00107A017
Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes (Ln = Gd, La, Lu). X-ray Structure of Disodium (TPS-9-145337286-C-S)-[4-Carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa- 5,8,11-triazatridecan-13-oato(5-)]gadolinate(2
F. Uggeri (1995)
10.1097/00003086-198907000-00003
Physical principles of magnetic resonance imaging.
L. Seeger (1989)
Intracellular visualization of prostate cancer using magnetic resonance imaging.
S. Heckl (2003)
10.1016/S1076-6332(03)80419-1
Comparative studies on the efficacy of MRI contrast agents in MRA.
Hanns-Joachim Weinmann (2002)
10.1162/15353500200200001
Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets
A. Bogdanov (2002)
10.1002/CMMI.92
First in vivo MRI assessment of a self-assembled metallostar compound endowed with a remarkable high field relaxivity.
J. B. Livramento (2006)
10.1021/JA044688H
Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
E. Tóth (2005)
10.1021/IC00107A021
Electronic Structure of the 16 Valence Electron Fragments M(CO)3(PR3)2 (M = Mo, W; R = iPr, Cy) in Their Complexes with H2, THF, and Three .pi.-Conjugated Dinucleating Ligands: Electrochemistry and Spectroscopy of Different Oxidation States
W. Bruns (1995)
10.1007/s00330-002-1719-1
Macromolecular contrast agents for MR mammography: current status
H. Daldrup-Link (2002)
10.1006/nbdi.2002.0550
Molecular Targeting of Alzheimer's Amyloid Plaques for Contrast-Enhanced Magnetic Resonance Imaging
J. Poduslo (2002)
10.1016/0584-8539(93)80039-D
Paramagnetic GdIIIFeIII heterobimetallic complexes of DTPA-bis-salicylamide
S. Aime (1993)
10.1148/RADIOLOGY.190.2.8284392
Focal liver lesions: characterization with nonenhanced and dynamic contrast material-enhanced MR imaging.
B. Hamm (1994)
10.1148/RADIOLOGY.197.3.7480718
Technique for MR imaging of the liver.
S. Saini (1995)
10.1002/mrm.10347
Renal and systemic pH imaging by contrast‐enhanced MRI
N. Raghunand (2003)
10.1002/mrm.20930
Chromium(VI) as a novel MRI contrast agent for cerebral white matter: Preliminary results in mouse brain in vivo
T. Watanabe (2006)
10.1002/mrm.21168
Hyperpolarized 13C MRI of the pulmonary vasculature and parenchyma
M. Ishii (2007)
10.1007/BF02594598
Gadofluorine 8: initial experience with a new contrast medium for interstitial MR lymphography
B. Misselwitz (2007)
Cardiac metabolismmeasured noninvasively by hyperpolarized C13 MRI
K Golman (2008)
Nuclear and Electron Relaxation: The Magnetic Nucleus-Unpaired Electron Coupling in Solution
L. Banci (1991)
10.1021/bc980030f
Novel paramagnetic macromolecular complexes derived from the linkage of a macrocyclic Gd(III) complex to polyamino acids through a squaric acid moiety.
S. Aime (1999)
10.1148/RADIOLOGY.178.1.1898539
Hepatobiliary MR imaging: first human experience with MnDPDP.
K. Lim (1991)
10.1021/JA042162R
A Gadolinium Chelate for Detection of β-Glucuronidase: A Self-Immolative Approach
Joseph A. Duimstra (2005)
10.1021/CR980440X
Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications.
P. Caravan (1999)
10.1073/PNAS.93.13.6610
Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI.
S. Young (1996)
10.1021/cr068445e
Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.
S. Laurent (2008)
10.1021/JA0264044
A paramagnetic MRI-CEST agent responsive to lactate concentration.
S. Aime (2002)
10.1021/JA038345F
A paramagnetic CEST agent for imaging glucose by MRI.
S. Zhang (2003)
10.1021/JA005820Q
A novel europium(III)-based MRI contrast agent.
S. Zhang (2001)
10.1021/JA983702L
A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent
W. H. Li (1999)
10.1002/(SICI)1522-2586(199909)10:3<395::AID-JMRI22>3.0.CO;2-P
Blood pool contrast agents for cardiovascular MR imaging
L. Kroft (1999)
10.1002/MRM.1910340214
Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles
S. Koenig (1995)
10.1246/CL.1978.693
Catalytic activity of the liquid Na-Pb alloy system.
K. Honda (1978)
Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging.
D. A. Sipkins (1998)
10.1002/(SICI)1521-3773(20000218)39:4<747::AID-ANIE747>3.0.CO;2-2
A p(O(2))-Responsive MRI Contrast Agent Based on the Redox Switch of Manganese(II / III) - Porphyrin Complexes.
Aimé (2000)
10.1016/S1074-5521(02)00216-8
Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion.
K. Hanaoka (2002)
10.1097/01.rli.0000116607.26372.d0
Ln(III)-DOTAMGly Complexes: A Versatile Series to Assess the Determinants of the Efficacy of Paramagnetic Chemical Exchange Saturation Transfer Agents for Magnetic Resonance Imaging Applications
E. Terreno (2004)
10.1021/IC0702926
Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH.
F. Kálmán (2007)
10.1002/CMMI.100
Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents.
S. Laurent (2006)
10.1002/jmri.21135
Biochemical safety profiles of gadolinium‐based extracellular contrast agents and nephrogenic systemic fibrosis
Hale Ersoy (2007)
10.1002/JMRI.1880070515
A multicenter clinical trial of gadolite oral suspension as a contrast agent for MRI
D. L. Rubin (1997)
10.1002/ANIE.200502173
Selective sensing of zinc ions with a PARACEST contrast agent.
R. Trokowski (2005)
10.1002/mrm.10656
Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI
Zheng-Rong Lu (2004)
10.1002/mrm.21093
Targeted PARACEST nanoparticle contrast agent for the detection of fibrin
P. Winter (2006)
10.1161/01.CIR.94.12.3271
Noninvasive evaluation of intrarenal oxygenation with BOLD MRI.
P. Prasad (1996)
10.1007/s007750050059
Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin
S. Aime (1996)
10.1039/B509907M
Paramagnetic lanthanide complexes as PARACEST agents for medical imaging.
M. Woods (2006)
10.1093/NDT/GFK062
Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?
T. Grobner (2006)
10.1002/1521-3773(20010803)40:15<2903::AID-ANIE2903>3.0.CO;2-N
Enzyme-Activated Gd3+ Magnetic Resonance Imaging Contrast Agents with a Prominent Receptor-Induced Magnetization Enhancement.
A. Nivorozhkin (2001)
10.1002/(SICI)1522-2586(199907)10:1<65::AID-JMRI9>3.0.CO;2-0
Contrast‐enhanced 3D‐MRA of the upper abdomen with a bolus‐injectable SPIO (SH U 555 A)
P. Reimer (1999)
10.1148/RADIOLOGY.183.1.1549695
Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system.
G. Schuhmann-Giampieri (1992)
10.1073/PNAS.89.13.5951
Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
S. Ogawa (1992)
10.1002/mrm.10529
Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging
Y. Wadghiri (2003)
10.1002/mrm.20847
MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance
L. Olsson (2006)
10.1158/0008-5472.CAN-06-2564
Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis.
K. Golman (2006)
10.1097/00004424-199303001-00005
Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent.
M. Van Wagoner (1993)
10.1021/ja042162r.s001
A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach.
Joseph A. Duimstra (2005)
10.1002/1521-3757(20020315)114:6<1059::aid-ange1059>3.0.co;2-o
Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging.
S. Aime (2002)
10.1002/ANIE.200352132
Supramolecular adducts between poly-L-arginine and [TmIIIdotp]: a route to sensitivity-enhanced magnetic resonance imaging-chemical exchange saturation transfer agents.
S. Aime (2003)
[In-vivo visualization of gene expression using magnetic resonance imaging].
Rika Takikawa (2007)
10.1097/00004424-199809000-00026
Magnetic resonance angiography with gadomer-17. An animal study original investigation.
Q. Dong (1998)
10.1007/3-540-45733-X_5
New Classes of MRI Contrast Agents
Vincent Jacques (2002)
10.1177/028418518802900522
Superparamagnetic Particles as an Mri Contrast Agent for the Gastrointestinal Tract
M. Lönnemark (1988)
10.1007/s00330-005-2806-x
13C imaging—a new diagnostic platform
S. Månsson (2005)
10.1016/S0169-409X(98)00098-2
Approaches and agents for imaging the vascular system.
Bogdanov (1999)
10.1246/CL.1998.693
A pH-Sensitive Contrast Agent for Functional Magnetic Resonance Imaging (MRI)
M. Mikawa (1998)
10.1148/RADIOLOGY.211.3.R99JN10865
Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study.
K. Ahlström (1999)
10.1016/S1076-6332(03)80273-8
Preclinical profile and clinical potential of gadocoletic acid trisodium salt (B22956/1), a new intravascular contrast medium for MRI.
F. Cavagna (2002)
10.1021/JA0158455
Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange.
N. Goffeney (2001)
10.1097/01.rli.0000184756.66360.d3
Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths
M. Rohrer (2005)
10.1148/radiol.2473071975
Nephrogenic systemic fibrosis: a chemical perspective.
N. Rofsky (2008)
10.1039/A900499H
A macromolecular Gd(III) complex as pH-responsive relaxometric probe for MRI applications
S. Aime (1999)
10.1016/0022-2364(75)90029-3
Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism
M. Guéron (1975)
10.1039/b206709a
EuII-cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO2 responsive macromolecular MRI contrast agents.
L. Burai (2002)
10.1002/mrm.20270
Human myeloperoxidase: A potential target for molecular MR imaging in atherosclerosis
J. Chen (2004)
10.1148/RADIOLOGY.178.3.1994417
Oral magnetic particles in MR imaging of the abdomen and pelvis.
P. Rinck (1991)
10.1021/JA063874F
A PARACEST MRI contrast agent to detect enzyme activity.
Byunghee Yoo (2006)
10.1016/S0010-8545(99)00028-4
Designing new MRI contrast agents: a coordination chemistry challenge
V. Comblin (1999)
10.1021/IC981072I
Synthesis and Physicochemical Characterization of a New Gadolinium Chelate: The Liver-Specific Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA.
H. Schmitt-Willich (1999)
10.1002/jmri.20184
MRI monitoring of Avastin™ antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer
A. Preda (2004)
10.1039/B402025A
Magnetic nanoparticle design for medical diagnosis and therapy
S. Mornet (2004)
10.1016/J.EJRAD.2006.06.021
MR contrast agents, the old and the new.
M. Bellin (2006)
10.1148/RADIOLOGY.207.2.9577506
MS-325: albumin-targeted contrast agent for MR angiography.
R. Lauffer (1998)



This paper is referenced by
10.1016/j.msec.2013.07.012
Contrast agents for MRI.
H. Shokrollahi (2013)
10.1007/s11051-012-1006-2
A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study
Maria Ahrén (2012)
International Journal of Nanomedicine Dovepress Gd 3+ -dtpa-dg: Novel Nanosized Dual Anticancer and Molecular Imaging Agent
Massoud Amanlou ()
10.1111/j.1460-9568.2011.07759.x
Spatio‐temporal dynamics, differentiation and viability of human neural stem cells after implantation into neonatal rat brain
T. Kallur (2011)
10.1007/s12350-018-1290-z
Relationship between microvascular changes, autonomic denervation, and myocardial fibrosis in Chagas cardiomyopathy: Evaluation by MRI and SPECT imaging
Gustavo Canavaci Barizon (2018)
10.3892/mmr.2014.2649
In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction
P. Hua (2015)
10.1002/mrm.27157
CEST‐MRI studies of cells loaded with lanthanide shift reagents
G. Ferrauto (2018)
10.1088/1361-648X/ab26fa
Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters.
Andrii Bodnaruk (2019)
10.1039/C6TB00832A
Heparin-stabilised iron oxide for MR applications: a relaxometric study.
Lucy Ternent (2016)
10.1002/adma.201004714
Nanoscale materials for tackling brain cancer: recent progress and outlook.
E. Rozhkova (2011)
10.1021/ML1002844
PET Imaging and Biodistribution of Silicon Quantum Dots in Mice.
C. Tu (2011)
10.1039/C0JM02754E
Gold–iron oxide nanoparticle chains scaffolded on DNA as potential magnetic resonance imaging agents
Hamsa Jaganathan (2011)
10.3389/fnins.2019.00012
Multi-Modal Nano Particle Labeling of Neurons
Lilac Amirav (2019)
10.1016/J.ICA.2012.07.004
The Gadonanotubes revisited: A new frontier in MRI contrast agent design
R. Sethi (2012)
10.1016/B978-0-323-42978-8.00010-3
Nanosystems for Diagnostic Imaging, Biodetectors, and Biosensors
G. Acharya (2017)
10.1016/J.JALLCOM.2019.02.276
Core/shell architecture as an efficient tool to tune DC magnetic parameters and AC losses in spinel ferrite nanoparticles
S. Solopan (2019)
10.1016/j.bmcl.2010.07.070
Synthesis of MRI contrast agents derived from DOTAM-Gly-L-Phe-OH incorporating a disulfide bridge: conjugation to a cell penetrating peptide and preparation of a dimeric agent.
M. Suchý (2010)
10.1039/c2cp41357d
Paramagnetic nanoparticle T1 and T2 MRI contrast agents.
Wen-long Xu (2012)
10.1109/IEMBS.2010.5627106
Effect of the chain of magnetosomes embedded in magnetotactic bacteria and their motility on Magnetic Resonance imaging
Ouajdi Felfoul (2010)
10.1002/chem.201000508
Target visualization by MRI using the avidin/biotin amplification route: synthesis and testing of a biotin-Gd-DOTA monoamide trimer.
L. Tei (2010)
10.1039/C2RA21052E
Fluorescein-polyethyleneimine coated gadolinium oxide nanoparticles as T1 magnetic resonance imaging (MRI)–cell labeling (CL) dual agents
Wen-long Xu (2012)
10.1039/c0dt01656j
Multimodality and nanoparticles in medical imaging.
Wen-Yen Huang (2011)
10.1039/b911307j
Molecular probes for the in vivo imaging of cancer.
Raphael Alford (2009)
Ef fi cient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells
A. Kunzmann (2011)
10.1002/cmdc.201800052
Synthesis, Characterization, and Biodistribution of a Dinuclear Gadolinium Complex with Improved Properties as a Blood Pool MRI Agent
Francesca La Cava (2018)
10.1007/s00414-013-0912-x
Allergic reactions following contrast material administration: nomenclature, classification, and mechanisms
C. Palmiere (2013)
10.1371/journal.pone.0100259
Assessing the Efficacy of Nano- and Micro-Sized Magnetic Particles as Contrast Agents for MRI Cell Tracking
A. Taylor (2014)
10.1039/c0dt01739f
Structure, stability and relaxivity of trinuclear triangular complexes.
Soumaila Zebret (2011)
10.1002/9780470661345.SMC104
Magnetic Resonance Imaging Contrast Agents
C. Bonnet (2012)
10.1007/s40843-018-9323-6
Dendrimer-based magnetic resonance imaging agents for brain cancer
L. Ding (2018)
10.2217/nnm.15.30
Gadolinium-based nanoparticles for theranostic MRI-radiosensitization.
F. Lux (2015)
10.1007/978-94-007-6178-0_100952-1
Magnetic Nanoparticles for Biomedical Applications
K. Witte (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar