Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Cytoarchitecture, Areas, And Neuron Numbers Of The Etruscan Shrew Cortex

R. Naumann, F. Anjum, C. Roth-Alpermann, M. Brecht
Published 2012 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The Etruscan shrew, Suncus etruscus, is one of the smallest mammals. Etruscan shrews can recognize prey shape with amazing speed and accuracy, based on whisker‐mediated tactile cues. Because of its small size, quantitative analysis of the Etruscan shrew cortex is more tractable than in other animals. To quantitatively assess the anatomy of the Etruscan shrew's brain, we sectioned brains and applied Nissl staining and NeuN (neuronal nuclei) antibody staining. On the basis of these stains, we estimated the number of neurons of 10 cortical hemispheres by using Stereoinvestigator and Neurolucida (MBF Bioscience) software. On average, the neuron number per hemisphere was found to be ∼1 million. We also measured cortical surface area and found an average of 11.1 mm2 (n = 7) and an average volume of 5.3 mm3 (n = 10) per hemisphere. We identified 13 cortical regions by cytoarchitectonic boundaries in coronal, sagittal, and tangential sections processed for Nissl substance, myelin, cytochrome oxidase, ionic zinc, neurofilaments, and vesicular glutamate transporter 2 (VGluT2). The Etruscan shrew is a highly tactile animal with a large somatosensory cortex, which contains a barrel field, but the barrels are much less clearly defined than in rodents. The anatomically derived cortical partitioning scheme roughly corresponds to physiologically derived maps of neocortical sensory areas. J. Comp. Neurol. 520:2512–2530, 2012. © 2012 Wiley Periodicals, Inc.
This paper references
10.1046/j.1365-2818.1999.00457.x
The efficiency of systematic sampling in stereology — reconsidered
H. Gundersen (1999)
Kälteresistenz und reversible Hypothermie der Etruskerspitzmaus (Suncus etruscus, Soricidae, Insectivora)
P. Vogel (1973)
10.1152/jn.00762.2009
Cortical organization in the Etruscan shrew (Suncus etruscus).
C. Roth-Alpermann (2010)
10.1007/BF00522616
The “extraverted neurons” of the mammalian cerebral cortex
F. Sanides (2004)
10.1002/AR.A.20265
Evolution of sensory specializations in insectivores.
K. Catania (2005)
10.1002/(SICI)1096-9861(19970317)379:3<399::AID-CNE6>3.0.CO;2-Z
Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi)
L. Krubitzer (1997)
10.1002/(SICI)1096-9861(19960226)366:1<109::AID-CNE8>3.0.CO;2-7
Topography, architecture, and connections of somatosensory cortex in opossums: Evidence for five somatosensory areas
P. D. Beck (1996)
10.1073/pnas.0605573103
Tactile guidance of prey capture in Etruscan shrews
Farzana Anjum (2006)
10.1159/000118674
Golgi study of the isocortex in an insectivore: the common European mole (Talpa europaea).
I. Ferrer (1986)
10.1111/j.1749-6632.1969.tb20447.x
A COMPARISON OF PRIMITIVE FOREBRAIN ORGANIZATION IN METATHERIAN AND EUTHERIAN MAMMALS *
F. Ebner (1969)
10.1002/CNE.900840302
Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas
W. J. Krieg (1946)
10.1111/J.1439-0469.1981.TB00242.X
Vergleichende Architektonik des Neocortex der Insectivora
G. Rehkaemper (2009)
10.1002/jnr.20354
Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization
D. Lind (2005)
10.3389/neuro.09.031.2009
The Human Brain in Numbers: A Linearly Scaled-up Primate Brain
S. Herculano-Houzel (2009)
10.1007/BF00298776
Absolute anzahl und verteilung der zellen im him der honigbiene
W. Witthöft (2004)
10.1002/CNE.901020204
Organization of the cerebral cortex. III. The cortex of sorex pacificus
M. Ryzen (1955)
10.1023/A:1024130211265
Microstructure of the neocortex: Comparative aspects
J. DeFelipe (2002)
10.1093/cercor/bhq067
Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex
H. S. Meyer (2010)
10.1007/BF00592566
Histochemical demonstration of heavy metals
G. Danscher (2004)
10.1007/BF00389593
Neocortical layers I and II of the hedgehog (Erinaceus europaeus)
F. Valverde (2004)
10.1159/000225381
An Architectonic Study of the Neocortex of the Short-Tailed Opossum (Monodelphis domestica)
Peiyan Wong (2009)
10.1073/pnas.0604911103
Cellular scaling rules for rodent brains
S. Herculano-Houzel (2006)
10.1016/0006-8993(79)90728-5
Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry
M. Wong-Riley (1979)
10.1002/cne.1037
Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex
F. Fujiyama (2001)
10.1002/CNE.902960405
Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract
R. Nudo (1990)
10.1007/978-3-662-03733-1
Cortex: Statistics and Geometry of Neuronal Connectivity
Prof. Dr. Valentino Braitenberg (1998)
Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues
K. Brodmann (1985)
10.1126/science.1203117
Fossil Evidence on Origin of the Mammalian Brain
T. Rowe (2011)
Histochemical demonstration of heavy metals . A revised version of the sulphide silver method suitable for both light and electron microscopy
J DeFelipe (1981)
Water shrews detect movement , shape and smell to detect prey underwater
CE Collins (2008)
Heart and respiratory rates and their significance for convective oxygen transport rates in the smallest mammal, the Etruscan shrew Suncus etruscus.
K. D. Jürgens (1996)
10.1016/j.neuron.2007.10.002
The Magnificent Compromise: Cortical Field Evolution in Mammals
L. Krubitzer (2007)
10.1093/CERCOR/BHH077
Region specific micromodularity in the uppermost layers in primate cerebral cortex.
N. Ichinohe (2004)
10.1177/38.5.1692056
A rapid, sensitive histochemical stain for myelin in frozen brain sections.
L. Schmued (1990)
10.1093/BRAIN/103.2.221
The basic uniformity in structure of the neocortex.
A. J. Rockel (1980)
10.1002/GLIA.440020203
Size and density of glial and neuronal cells within the cerebral neocortex of various insectivorian species
J. Stolzenburg (1989)
Vergleichend-anatomische Untersuchungen an Insektivorengehirnen I. Hirnform, paleo-neocortikale Grenze und relative Zusammensetzung der Cortexo-berfl€ ache
H Stephan (1956)
10.3389/neuro.05.008.2009
Cellular Scaling Rules of Insectivore Brains
D. Sarko (2009)
10.1002/AR.1092310411
Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator
M. West (1991)
10.1002/CNE.902960102
Unbiased stereological estimation of the number of neurons in the human hippocampus
M. West (1990)
10.1002/ar.20758
Architectonic Subdivisions of Neocortex in the Gray Squirrel (Sciurus carolinensis)
Peiyan Wong (2008)
10.1016/j.jchemneu.2005.01.003
Regional analysis of neurofilament protein immunoreactivity in the hamster's cortex
D. Boire (2005)
10.1073/pnas.0611396104
Cellular scaling rules for primate brains
S. Herculano-Houzel (2007)
10.1016/j.neuroscience.2009.08.018
Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838)
M. Morawski (2010)
10.5860/choice.31-0037
Mammal species of the world : a taxonomic and geographic reference
James H. Honacki (1982)
10.1073/pnas.0805417105
The basic nonuniformity of the cerebral cortex
S. Herculano-Houzel (2008)
10.1111/J.1439-0469.1984.TB00653.X
Brains of Soricidae: I. Encephalization and macromorphology, with special reference to Suncus etruscus
R. Fons (2009)
10.1016/j.neuroscience.2006.01.023
Multisensory plasticity in congenitally deaf mice: How are cortical areas functionally specified?
D. L. Hunt (2006)
10.1046/j.1365-2818.1999.0429a.x
Unbiased Stereology. Three‐Dimensional Measurement in Microscopy.
K. Sandau (1999)
10.1002/(SICI)1096-9861(19990719)410:1<55::AID-CNE6>3.0.CO;2-2
Cortical organization in shrews: Evidence from five species
K. Catania (1999)
10.1152/JN.1970.33.5.595
Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions.
J. Kaas (1970)
10.1016/0006-8993(93)90884-P
Numerical data on neocortical neurons in adult rat, with special reference to the GABA population
C. Beaulieu (1993)
10.1111/J.1439-0469.1984.TB00667.X
Brains of Soricidae II. Volume comparison of brain components
H. Stephan (1984)
An architectonic study of the neocortex of the short-tailed ppossum
P Wong (2009)
10.1073/pnas.1010356107
Neuron densities vary across and within cortical areas in primates
C. Collins (2010)
10.1073/pnas.0709534104
Water shrews detect movement, shape, and smell to find prey underwater
K. Catania (2008)
Histologische Lokalisation der Großhirnrinde bei kleinen S € augetieren ( Rodentia , Insectivora , Chiroptera )
C Roth-Alpermann (1912)
10.1007/BF00318926
Neocortical layers I and II of the hedgehog (Erinaceus europaeus)
F. Valverde (2004)
10.1111/j.1749-6632.2011.05981.x
Neocortex in early mammals and its subsequent variations
J. Kaas (2011)



This paper is referenced by
10.1002/cne.24018
The evolution of whisker‐mediated somatosensation in mammals: Sensory processing in barrelless S1 cortex of a marsupial, Monodelphis domestica
Deepa L Ramamurthy (2016)
10.1159/000375438
Even the Smallest Mammalian Brain Has Yet to Reveal Its Secrets
R. Naumann (2015)
10.1038/s41598-020-73547-6
Species-specific differences in synaptic transmission and plasticity
P. Beed (2020)
10.1002/cne.23865
Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex
R. Naumann (2016)
10.1002/cne.25073
An isomorphic three-dimensional cortical model of the pig rostrum.
Cindy Ritter (2020)
10.1523/JNEUROSCI.1814-17.2018
Testing the Efficacy of Single-Cell Stimulation in Biasing Presubicular Head Direction Activity
Stefano Coletta (2018)
10.1002/9781118524756.CH10
Evolving the Developing Cortex
C. Charvet (2015)
10.1101/001214
Conneconomics: The Economics of Large-Scale Neural Connectomics
Adam H. Marblestone (2013)
10.1007/s00359-012-0781-7
The neurobiology and behavior of the American water shrew (Sorex palustris)
K. Catania (2012)
10.1002/cne.23550
Topography and architecture of visual and somatosensory areas of the agouti
I. Dias (2014)
10.1016/j.jocn.2018.11.020
Effects of various lengths of hypoglossal nerve resection on motoneuron survival
Mika Karasawa (2019)
10.1016/j.neures.2014.07.002
Neuronal subtype specification in establishing mammalian neocortical circuits
T. Kumamoto (2014)
10.1080/01616412.2016.1275461
Stereological assessment of the total number of hypoglossal neurons after repeated crush injuries to the hypoglossal nerve in adult rats
N. Fukushima (2017)
10.1007/s00429-018-1666-5
Profound seasonal changes in brain size and architecture in the common shrew
Javier Lázaro (2018)
Rosetta Brains: A Strategy for Molecularly-Annotated Connectomics
Adam H. Marblestone (2014)
Modeling the origins of spatial and temporal variability in visual cortical representations
Flórez Weidinger (2013)
Conneconomics : The Economics of Dense , Large-Scale , High-Resolution Neural Connectomics
Adam H. Marblestone (2014)
10.1073/pnas.1922888117
Seasonal plasticity in the adult somatosensory cortex
Saikat Ray (2020)
10.1098/rstb.2011.0160
The neurobiology of Etruscan shrew active touch
M. Brecht (2011)
10.1371/journal.pone.0065975
Barrelettes without Barrels in the American Water Shrew
K. Catania (2013)
10.1016/j.conb.2013.08.017
Neural maps versus salt-and-pepper organization in visual cortex
M. Kaschube (2014)
Designing Scalable Biological Interfaces
Adam H. Marblestone (2014)
10.1126/SCIENCE.1206416
Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex“
W. Keil (2012)
Causes and consequences of seasonal changes in the braincase and brain size of the common shrew Sorex araneus
J. Tapia (2018)
10.1002/wcs.1206
The evolution of brains from early mammals to humans.
J. Kaas (2013)
10.1016/j.neuroscience.2014.04.050
Stereological quantification of olfactory receptor neurons in mice
K. Kawagishi (2014)
10.1002/cne.24160
Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals
C. Charvet (2017)
10.1016/B978-0-12-804042-3.00038-5
The Miniature Neocortex of Shrews—Clues to Mammalian Brain Evolution
K. Catania (2017)
Semantic Scholar Logo Some data provided by SemanticScholar