Online citations, reference lists, and bibliographies.

Synthesis And Characterization Of Biogenic Selenium Nanoparticles With Antimicrobial Properties Made By Staphylococcus Aureus, Methicillin-resistant Staphylococcus Aureus (MRSA), Escherichia Coli, And Pseudomonas Aeruginosa.

David Medina Cruz, Gujie Mi, Thomas J. Webster
Published 2018 · Medicine, Materials Science
Cite This
Download PDF
Analyze on Scholarcy
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.
This paper references
The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles
Ahmed Abdal Dayem (2017)
Preparation of elemental tellurium nanoparticles — sucrose sol and its antioxidant activity in vitro
Yunzhi Li (2013)
Overview of microbial biofilms
Jw Costerton (2005)
Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles.
Manuel Losi (1997)
Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics
Richa Singh (2013)
An Organic Acid-induced Synthesis and Characterization of Selenium Nanoparticles
Charu Dwivedi (2011)
Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity
Wei Hong (2014)
On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating some bacterial antagonisms
Alexander Fleming (1932)
Structure and characterization of TeO2 nanoparticles prepared in acid medium
Biyin Qin (2009)
Preparation and Characterization of Nano-silver Loaded Montmorillonite with Strong Antibacterial Activity and Slow Release Property
Guangnian Xu (2011)
A bacterial process for selenium nanosphere assembly
Charles Maurice Debieux (2011)
Bacterial biofilms: a common cause of persistent infections.
John William Costerton (1999)
The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth
Christopher Edward Hassan (2016)
Synthesis of spherical amorphous selenium nano and microparticles with tunable sizes
Vilém Bartůněk (2016)
Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Langmuir : the ACS journal of surfaces and colloids
Taglietti (2012)
Disinfection in Food Processing – Efficacy Testing of Disinfectants
Gun Wirtanen (2003)
Observation in the Growth of Selenium Nanoparticles
Zong-Hong Lin (2004)
Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications.
Asma Khalid (2016)
Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria.
Angelo Taglietti (2012)
Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions.
Helen Ridley (2006)
A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol.
Mortaza Iranifam (2013)
The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation
Seong-Cheol Park (2011)
Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection.
Luis R Martinez (2009)
Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli.
Janine Kessi (2004)
Toxicity and biocompatibility of carbon nanoparticles.
Silvana Fiorito (2006)
Synthesis, Optimization, and Characterization of Silver Page 25 of 45 John Wiley & Sons, Inc. Journal of Biomedical Materials Research: Part A This article is protected by copyright
Singh (2013)
Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water
Olivier Van Overschelde (2013)
Superlong High-Quality Tellurium Nanotubes: Synthesis, Characterization, and Optical Property
Jiming Song (2008)
Synthesis of gold and silver nanoparticles using purified URAK.
Venkataraman Deepak (2011)
Metal resistance in Acinetobacter and its relation to beta-lactamase production.
Lalitagauri Milind Deshpande (1993)
Antimicrobial activity of metals: mechanisms, molecular targets and applications
Joseph A. Lemire (2013)
Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.
Anee Mohanty (2014)
Selenium biomineralization for biotechnological applications.
Yarlagadda V Nancharaiah (2015)
Antimicrobial Activity of Metals: Mechanisms, Molecular Targets, and Applications
Lemire (2013)
Selenium nanoparticles inhibit Staphylococcus aureus growth
Phong Tran (2011)
Studies on Antibacterial Activity of ZnO Nanoparticles by ROS-Induced Page 23 of 45 John Wiley & Sons, Inc. Journal of Biomedical Materials Research: Part A This article is protected by copyright
Dutta (2012)
Gold nanoparticles: microbial synthesis and application in water hygiene management.
Sujoy K Das (2009)
Detection of selenium deposits in Escherichia coli by electron microscopy.
Theresa L. Gerrard (1974)
Microbial synthesis of gold nanoparticles: current status and future prospects.
Utkarsha U. Shedbalkar (2014)
Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications
Richa Singh (2015)
Functionalisation of nanoparticles for biomedical applications
Nguyễn Thị Kim Thanh (2010)
In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture
Mahnaz Mandeh (2012)
Biogenic selenium nanoparticles: current status and future prospects
Sweety A. Wadhwani (2016)
Antioxidant action by gold-PAMAM dendrimer nanocomposites.
Kunio Esumi (2004)
Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents
Sougata Ghosh (2012)
Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study.
Rachna Singh (2009)
Surfactant-assisted synthesis of bundle-like nanostructures with well-aligned Te nanorods
Jun Li (2008)
Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties.
David Botequim (2012)
Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum.
Janine Kessi (1999)
Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering
Vojislav Stanić (2011)
Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis.
Clive Butler (2012)

This paper is referenced by
Synergistic Antibacterial Actions of Graphene Oxide and Antibiotics towards Bacteria and the Toxicological Effects of Graphene Oxide on Human Epidermal Keratinocytes.
Thiruchelvi Pulingam (2019)
Agr typing of Staphylococcus aureus species isolated from clinical samples in training hospitals of Isfahan and Shahrekord
Saeid Javdan (2019)
Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires
Ada Vernet Crua (2019)
Novel magnetic nanocomposites combining selenium and iron oxide with excellent anti-biofilm properties
Shan Li (2019)
Bimetallic Nanoparticles for Biomedical Applications: A Review
David Medina-Cruz (2020)
Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review
Muthupandian Saravanan (2020)
Citric Juice-mediated Synthesis of Tellurium Nanoparticles with Antimicrobial and Anticancer Properties.
David Medina Cruz (2019)
Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties
Christopher D. Brown (2018)
Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review
Anjalika. Singh (2020)
The Antimicrobial Effect Of +Oxivarea against Methicillin Resistance Staphylococcus Aureus and Pseudomonas Aeruginosa
Yaya Hidayat (2019)
Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent.
Erfan Zabihi (2019)
Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens
Márta Nové (2020)
Characterization of Biogenic Nanoparticles Via In-Situ Correlative Secondary Electron Helium Microscopy and Secondary Ion Mass Spectrometry
Christelle Guillermier (2019)
Preparation of amorphous nano-selenium-PEG composite network with selective antimicrobial activity
Vilém Bartůněk (2019)
Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents
Diana Lomelí-Marroquín (2019)
Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA)
Priyanka Surwade (2018)
Synergistic Antibacterial Activity and Wound Healing Properties of Selenium-Chitosan-Mupirocin Nanohybrid System: An in Vivo Study on Rat Diabetic Staphylococcus aureus Wound Infection Model
Reza Golmohammadi (2020)
Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review
David Medina Cruz (2020)
Green nanotechnology-based drug delivery systems for osteogenic disorders
David Medina-Cruz (2020)
Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and Their Enhanced Antimicrobial Activity Against Resistant Bacteria
Hammad Alam (2019)
Selenium-enriched Coriolus versicolor mushroom biomass: potential novel food supplement with improved selenium bioavailability.
Dunja Miletić (2019)
Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications
Kar Xin Lee (2020)
Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections.
Daniel Zumerkorn Hassan (2020)
Semantic Scholar Logo Some data provided by SemanticScholar