Online citations, reference lists, and bibliographies.
← Back to Search

Intravoxel Incoherent Motion Diffusion‐weighted MRI At 3.0 T Differentiates Malignant Breast Lesions From Benign Lesions And Breast Parenchyma

L. Bokacheva, J. Kaplan, D. Giri, Sujata Patil, Merlin Gnanasigamani, C. Nyman, J. Deasy, E. Morris, S. Thakur
Published 2014 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
To study the differentiation of malignant breast lesions from benign lesions and fibroglandular tissue (FGT) using apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) parameters.
This paper references
Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758–769
EE Sigmund (2012)
Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different bvalue combinations
Y Pang (2013)
Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 2009;253:341–351
W Bogner (2009)
10.1148/RADIOLOGY.200.3.8756909
Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis.
L. Buadu (1996)
10.1148/RADIOL.2232010428
Breast cancer: regional blood flow and blood volume measured with magnetic susceptibility-based MR imaging--initial results.
Jean-Paul Delille (2002)
10.2214/AJR.181.3.1810619
MRI of occult breast carcinoma in a high-risk population.
E. Morris (2003)
10.2214/AJR.09.3534
Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size.
S. Partridge (2010)
10.1097/RCT.0b013e318165dc6b
Diffusion-Weighted Magnetic Resonance Imaging of Breast Lesions: First Experiences at 3 T
G. Lo (2009)
software.Department of Radiology,University of Chicago Medical Center
Metz CE.ROC (2006)
Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102–125
AR Padhani (2009)
10.1097/RLI.0b013e3181b62271
Differentiation of Pancreas Carcinoma From Healthy Pancreatic Tissue Using Multiple b-Values: Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion Derived Parameters
A. Lemke (2009)
10.1148/radiol.12111327
Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges.
E. Sigmund (2012)
10.1002/jmri.23770
Extension of the intravoxel incoherent motion model to non‐gaussian diffusion in head and neck cancer
Y. Lu (2012)
10.1148/radiol.09090891
Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification.
J. Zhang (2010)
10.1148/rg.314105160
Diffusion-weighted imaging of the breast: principles and clinical applications.
R. Woodhams (2011)
10.1148/radiol.2532081718
Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis?
W. Bogner (2009)
10.1002/1097-0142(196910)24:4<653::AID-CNCR2820240402>3.0.CO;2-B
Further observations on prognostic factors in cancer of the female breast
S. Cutler (1969)
10.1002/jmri.10140
Differentiation of clinically benign and malignant breast lesions using diffusion‐weighted imaging
Y. Guo (2002)
10.1148/radiol.12111248
Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors.
M. Sumi (2012)
10.1002/mrm.22565
An in vivo verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen
A. Lemke (2010)
10.1002/mrm.22740
Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer
E. Sigmund (2011)
10.1002/nbm.1475
Diffusion‐weighted imaging of normal fibroglandular breast tissue: influence of microperfusion and fat suppression technique on the apparent diffusion coefficient
P. Baron (2010)
10.1593/NEO.81328
Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations.
A. Padhani (2009)
10.1002/mrm.22982
Optimization of b‐value sampling for diffusion‐weighted imaging of the kidney
J. Zhang (2012)
10.2463/MRMS.4.35
ADC mapping of benign and malignant breast tumors.
R. Woodhams (2005)
10.1002/mrm.24277
Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation of perfusion fraction and diffusion coefficient derived from different b‐value combinations
Y. Pang (2013)
10.1002/jmri.10116
In vivo diffusion‐weighted MRI of the breast: Potential for lesion characterization
S. Sinha (2002)
10.1002/(SICI)1522-2594(200002)43:2<295::AID-MRM18>3.0.CO;2-2
In vivo intravoxel incoherent motion measurements in the human placenta using echo‐planar imaging at 0.5 T
R. Moore (2000)
10.1148/RADIOLOGY.161.2.3763909
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
D. Le Bihan (1986)
10.1148/radiol.2493080080
Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study.
A. Luciani (2008)
[WHO classification of tumors of the breast].
F. Yang (2014)
10.1016/j.mri.2011.03.004
Toward an optimal distribution of b values for intravoxel incoherent motion imaging.
Andreas Lemke (2011)
10.1016/0730-725X(94)00096-L
In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise.
D. Morvan (1995)
10.3348/JKRS.1999.41.6.1219
Mammographic Evaluation of Suspicious Malignant Lesions Based on ACR(American College of Radiology) Breast Imaging Reporting and Data System( BI-RADS )
J. H. Lee (1999)
10.1148/RADIOL.2413060103
Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience.
H. Thoeny (2006)
10.2214/AJR.08.2139
Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value.
S. Partridge (2009)
10.1148/RADIOLOGY.168.2.3393671
Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
D. Le Bihan (1988)
10.1118/1.2936220
DCEMRI of breast lesions: Is kinetic analysis equally effective for both mass and nonmass-like enhancement?
S. Jansen (2008)
10.1002/JMRI.20643
Quantitative diffusion imaging in breast cancer: A clinical prospective study
E. Rubesova (2006)
10.1002/mrm.24307
On shimming approaches in 3T breast MRI
I. Hancu (2013)
10.1111/j.1365-2559.1991.tb00229.x
pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long‐term follow‐up
C. Elston (1991)
10.1148/RADIOLOGY.210.3.R99FE17617
Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging.
I. Yamada (1999)
10.1002/nbm.1793
Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model
S. Kim (2012)



This paper is referenced by
10.1002/jmri.25839
Intravoxel incoherent motion diffusion‐weighted imaging in assessing bladder cancer invasiveness and cell proliferation
F. Wang (2018)
10.26717/BJSTR.2019.19.003301
Characterization of Breast Lesions Using Diffusion Kurtosis Model-Based Imaging
He Shao-zhong (2019)
10.1007/s40134-016-0142-3
Magnetic Resonance Imaging: Advanced Applications in Breast Cancer
H. Rahbar (2016)
10.1016/j.mri.2016.10.005
Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions.
Dejing Ma (2017)
10.1007/s10334-016-0591-y
A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model
R. Fusco (2016)
Modelling of diffusion-weighted MRI signals in non-neural tissue
Sisi Liang (2017)
10.1186/s12885-019-6201-4
Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions
A. Surov (2019)
10.1002/jmri.25796
Apparent diffusion coefficient in estrogen receptor‐positive and lymph node‐negative invasive breast cancers at 3.0T DW‐MRI: A potential predictor for an oncotype Dx test recurrence score
S. Thakur (2018)
10.21037/QIMS.2016.08.05
Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors.
Jing Yuan (2016)
10.1002/jmri.25479
Diffusion‐weighted breast MRI: Clinical applications and emerging techniques
S. Partridge (2017)
10.1002/jmri.25612
Multiparametric diffusion‐weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors
S. Suo (2017)
10.18383/j.tom.2019.00028
Discrimination of Malignant and Benign Breast Lesions Using Quantitative Multiparametric MRI: A Preliminary Study
Kurt Li (2020)
10.1002/jmri.25086
Semi‐automated quantitative intravoxel incoherent motion analysis and its implementation in breast diffusion‐weighted imaging
H. Dijkstra (2016)
Value of intravoxel incoherent motion diffusion-weighted MR imaging in differentiating malignant from benign pulmonary lesions : a meta analysis
Xiliang Chen (2017)
10.1097/RCT.0000000000000661
Intravoxel Incoherent Motion Diffusion-Weighted Imaging Versus Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Comparison of the Diagnostic Performance of Perfusion-Related Parameters in Breast
L. Jiang (2018)
10.1016/j.crad.2017.10.021
Clinical role of breast MRI now and going forward.
D. Leithner (2018)
10.1259/bjr.20160715
The potential of multiparametric MRI of the breast.
K. Pinker (2017)
Reliability and Uncertainty in Diffusion MRI Modelling
Christopher Ned Charles (2016)
10.1186/s12911-020-01257-0
The role of histogram analysis in diffusion-weighted imaging in the differential diagnosis of benign and malignant breast lesions
Ya-Nan Jin (2020)
10.1007/s00256-017-2603-z
Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions
Sunghoon Park (2017)
10.11318/MII.32.1
Simultaneous T2 and biexponential diffusion analysis in breast lesion
Masako Takanaga (2015)
10.1016/j.crad.2020.03.039
Multiple b-value diffusion-weighted imaging in differentiating benign from malignant breast lesions: comparison of conventional mono-, bi- and stretched exponential models.
B-Y Chen (2020)
10.1007/s00330-014-3577-z
Whole-body intravoxel incoherent motion imaging
L. Filli (2014)
10.1002/jmri.25790
Multiparametric MRI of the breast: A review
M. A. Marino (2018)
10.1002/jmri.26908
Diffusion MRI of the breast: Current status and future directions
M. Iima (2019)
10.1002/jmri.25048
Modified triexponential analysis of intravoxel incoherent motion for brain perfusion and diffusion
N. Ohno (2016)
10.1016/j.neuroimage.2017.12.062
What can we see with IVIM MRI?
D. Bihan (2017)
10.1016/j.ejrad.2016.06.019
Quantitative apparent diffusion coefficient measurement obtained by 3.0Tesla MRI as a potential noninvasive marker of tumor aggressiveness in breast cancer.
M. Durando (2016)
10.1148/radiol.2015150244
Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future.
M. Iima (2016)
10.1007/978-3-319-07887-8_53
Modelling Vascularity in Breast Cancer and Surrounding Stroma Using Diffusion MRI and Intravoxel Incoherent Motion
Colleen Bailey (2014)
10.1002/mrm.26505
Voxelwise analysis of simultaneously acquired and spatially correlated 18F‐fluorodeoxyglucose (FDG)‐PET and intravoxel incoherent motion metrics in breast cancer
Jason Ostenson (2017)
10.1097/RLI.0000000000000465
Diffusion-Weighted Imaging With Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand-Alone Parameter: Comparison With Dynamic Contrast-Enhanced and Multiparametric Magnetic Resonance Imaging
K. Pinker (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar