Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

MRI Of Insulitis In Autoimmune Diabetes

A. Moore, Phillip Zhe Sun, D. Cory, D. Högemann, R. Weissleder, Myra A. Lipes
Published 2002 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Development of imaging techniques that would allow the mapping of immune cells in vivo could greatly aid our understanding of a number of inflammatory and autoimmune diseases. The current study focused on imaging of autoimmune destruction of the insulin‐producing pancreatic beta‐cells by cytotoxic lymphocytes, the cause of insulin‐dependent diabetes mellitus (IDDM; Type 1 diabetes). Using high‐resolution MR microscopy and a conventional clinical MR imaging system, it was possible to visualize the infiltration of immune cells in the diabetic mouse pancreas. Mouse lymphocytes were visualized by magnetically labeling them with recently developed magnetic nanoparticles (CLIO‐Tat). The results from this study could potentially lead to detection of immune infiltration during diabetes formation in vivo, which would be one of the earliest parameters of disease development. Magn Reson Med 47:751–758, 2002. © 2002 Wiley‐Liss, Inc.
This paper references
10.1016/S0140-6736(05)65579-1
The causes of diabetes
LS Rothenberg (1996)
10.1530/ACTA.0.1050379
Pancreatic islet volume distribution: direct measurement in preparations stained by perfusion in situ.
V. Bonnevie-Nielsen (1984)
10.1109/23.775590
Development of a small animal PET imaging device with resolution approaching 1 mm
J. Correia (1999)
10.1002/JMRI.1880070140
Magnetically labeled cells can be detected by MR imaging
R. Weissleder (1997)
10.1007/978-3-642-74255-2_3
On the pathogenesis of insulin-dependent diabetes mellitus.
T. Mandrup-Poulsen (1988)
Histology by magnetic resonance microscopy.
G. Johnson (1993)
10.1056/NEJM198508083130604
In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis.
G. Bottazzo (1985)
10.1056/NEJM198605223142106
Type I diabetes mellitus. A chronic autoimmune disease.
G. Eisenbarth (1986)
10.1021/BC980125H
High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.
L. Josephson (1999)
In vivo measurement of immunoglobulin accumulation in the pancreas of recent onset type 1 diabetic patients.
A. Signore (1996)
10.2144/98244RR01
Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies.
U. Schoepf (1998)
10.1016/0140-6736(90)90013-U
Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes
E. Bonifacio (1990)
10.1007/s002590050250
Prognostic relevance of pancreatic uptake of technetium-99m labelled human polyclonal immunoglobulins in patients with type 1 diabetes
R. Barone (1998)
10.1097/00006231-199210000-00003
A radiopharmaceutical for imaging areas of lymphocytic infiltration: 123I-interleukin-2. Labelling procedure and animal studies.
A. Signore (1992)
Prognostic relevance of uptake of technetium-99m labeled human polyclonal immunoglobulins in the pancreas of patients with type 1 diabetes
R Barone (1998)
ISLET TRANSPLANTATION IN SEVEN PATIENTS WITH TYPE 1 DIABETES MELLITUS USING A GLUCOCORTICOID-FREE IMMUNOSUPPRESSIVE REGIMEN
J. Am (2000)
Trapping of peripheral blood lymphocytes in the pancreas of patient with acute - onset insulin dependent
A Kaldany
10.2337/diab.43.11.1304
Combined Analysis of Autoantibodies Improves Prediction of IDDM in Islet Cell Antibody-Positive Relatives
P. Bingley (1994)
10.1530/EJE.0.1310431
New approach for in vivo detection of insulitis in type I diabetes: activated lymphocyte targeting with 123I-labelled interleukin 2.
A. Signore (1994)
10.1073/PNAS.96.26.15256
Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination.
J. Bulte (1999)
10.1210/ENDO.136.5.7720649
Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones.
J. Parsons (1995)
10.1148/RADIOLOGY.212.3.R99SE18609
Molecular imaging: exploring the next frontier.
R. Weissleder (1999)
10.2337/diab.31.5.463
Trapping of Peripheral Blood Lymphocytes in the Pancreas of Patients with Acute-Onset Insulin-dependent Diabetes Mellitus
A. Kaldany (1982)
10.1073/PNAS.89.8.3290
The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency.
M. Procházka (1992)
10.1038/73219
In vivo magnetic resonance imaging of transgene expression
R. Weissleder (2000)
10.1007/BF03350897
In vivo imaging of insulitis in autoimmune diabetes
A. Signore (1999)
10.1073/PNAS.91.9.3530
Magnetic resonance microscopy of mouse embryos.
B. Smith (1994)
mellitus
A Signore (1982)
10.1038/74464
Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells
M. Lewin (2000)
10.1146/ANNUREV.IY.08.040190.003243
Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat.
L. Castaño (1990)
10.1016/S0969-8051(97)00021-8
The development of technetium-99m-labelled interleukin-2: a new radiopharmaceutical for the in vivo detection of mononuclear cell infiltrates in immune-mediated diseases.
M. Chianelli (1997)
10.1146/ANNUREV.IY.09.040191.001543
The SCID mouse mutant: definition, characterization, and potential uses.
M. Bosma (1991)
10.1016/S0006-3495(99)77182-1
Detection of single mammalian cells by high-resolution magnetic resonance imaging.
S. J. Dodd (1999)
10.3109/07853899708999369
Strategies for identifying and predicting islet autoantigen T-cell epitopes in insulin-dependent diabetes mellitus.
Margo C Honeyman (1997)
10.1016/0092-8674(94)90337-9
Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm
T. Springer (1994)
10.1210/JCEM.85.3.6459
Islet cell antibody-positive relatives with human leukocyte antigen DQA1*0102, DQB1*0602: identification by the Diabetes Prevention Trial-type 1.
C. Greenbaum (2000)



This paper is referenced by
10.1038/nprot.2006.63
In vivo multimodal imaging of transplanted pancreatic islets
Z. Medarova (2006)
10.1007/s00330-009-1540-1
Labelling of mammalian cells for visualisation by MRI
M. Bernsen (2009)
10.1016/J.JACC.2006.08.026
Imaging stem cells implanted in infarcted myocardium.
R. Zhou (2006)
10.14670/HH-19.651
Molecular imaging: Bridging the gap between neuroradiology and neurohistology.
S. Heckl (2004)
10.1016/j.imlet.2013.12.018
Nanomedicine in autoimmunity.
X. Clemente-Casares (2014)
10.1002/mrm.20282
MRI of transplanted pancreatic islets
D. Jirák (2004)
10.2217/IIM.13.67
Theranostic MRI: the future for Type 1 diabetes management?
Ping Wang (2014)
Functional Imaging of Insulitis in Type 1 Diabetes
T. Kalliokoski (2014)
Molecular and Stem Cell Imaging maging Stem Cells Implanted in Infarcted Myocardium
ong Zhou (2006)
10.1038/sj.bjc.6600814
Early detection of tumour immune-rejection using magnetic resonance imaging
D. Hu (2003)
10.1016/B978-1-4160-4722-3.00009-4
Chapter 9 – MOLECULAR IMAGING OF RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS
S. Biswal (2009)
10.1016/J.NUCMEDBIO.2006.07.002
Visualizing pancreatic β-cell mass with [11C]DTBZ
Norman R. Simpson (2006)
10.2174/138161210791164171
MR imaging of pancreatic islets: tracking isolation, transplantation and function.
L. Leoni (2010)
10.1002/CMMI.104
Single-cell detection by gradient echo 9.4 T MRI: a parametric study.
P. Smirnov (2006)
10.1002/9783527610419.NTLS0166
Magnetic Nanomaterials as MRI Contrast Agents
Y. Gun’ko (2011)
Visualizing pancreatic h-cell mass with ( 11 C)DTBZ
Norman R. Simpson (2006)
10.2337/db06-0393
Imaging Islets Labeled With Magnetic Nanoparticles at 1.5 Tesla
J. H. Tai (2006)
10.1016/j.addr.2018.11.007
Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting.
J. Yang (2018)
10.1007/978-3-642-34303-2_20
Molecular Imaging Methods in Diabetes-Related Studies
Liangyi Chen (2013)
10.1016/S0076-6879(04)86013-0
Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging.
J. Bulte (2004)
10.2147/IJN.S44013
Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity
J. P. Williams (2013)
10.1007/978-94-007-6884-0_39-2
Approaches for Imaging Pancreatic Islets: Recent Advances and Future Prospects 4
Xavier Montet (2015)
10.1002/mrm.10417
Imaging single mammalian cells with a 1.5 T clinical MRI scanner
Paula Foster-Gareau (2003)
10.2217/nnm.14.160
Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release.
O. Zupke (2015)
10.1016/S0142-9612(02)00440-4
Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating.
C. Wilhelm (2003)
10.1038/nm1316
In vivo imaging of islet transplantation
N. Evgenov (2006)
MAGNETIC RESONANCE IMAGING OF PANCREATIC ISLETS TRANSPLANTATION An experimental study in mice and baboons
N. Evgenov (2012)
10.1586/17434440.3.4.427
Cellular magnetic resonance imaging: current status and future prospects
A. Arbab (2006)
10.1016/S0066-4103(04)55005-6
Microscopy in magnetic resonance imaging
P. Narasimhan (2005)
Teemu Kalliokoski FUNCTIONAL IMAGING OF INSULITIS IN TYPE 1 DIABETES
M. Haaparanta-Solin (2014)
10.2214/AJR.08.2156
MRI in diabetes: first results.
Z. Medarova (2009)
10.1016/j.biomaterials.2017.05.038
MRI-sensitive contrast agent with anticoagulant activity for surface camouflage of transplanted pancreatic islets.
Y. H. Hwang (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar