Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

A Dual Echo Approach To Removing Motion Artefacts In FMRI Time Series

P. F. Buur, B. Poser, D. Norris
Published 2009 · Computer Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
In fMRI, subject motion can severely affect data quality. This is a particular problem when movement is correlated with the experimental paradigm as this potentially causes artefactual activation. A method is presented that uses linear regression, to utilise the time course of an image acquired at very short echo time (TE) as a voxel‐wise regressor for a second image in the same echo train, that is acquired with high BOLD sensitivity. The value of this approach is demonstrated using task‐locked motion combined with visual stimulation. Results obtained at both 1.5 and 3 T show improvements in functional activation maps for individual subjects. The method is straightforward to implement, does not require extra scan time and can easily be embedded in a multi‐echo acquisition framework. Copyright © 2009 John Wiley & Sons, Ltd.
This paper references
10.1006/nimg.2001.0869
Motion Correction Algorithms May Create Spurious Brain Activations in the Absence of Subject Motion
Leite Freire (2001)
10.1016/S0730-725X(02)00563-5
On the origin of respiratory artifacts in BOLD-EPI of the human brain.
C. Windischberger (2002)
10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O
Event‐related fMRI of tasks involving brief motion
R. Birn (1999)
10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q
Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI
E. Bullmore (1999)
10.1109/TBME.2005.851484
Automated correction of spin-history related motion artefacts in fMRI: Simulated and phantom data
L. Muresan (2005)
10.1002/NBM.1158
Very high‐resolution three‐dimensional functional MRI of the human visual cortex with elimination of large venous vessels
M. Barth (2007)
10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O
Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging
S. Posse (1999)
10.1016/j.neuroimage.2005.02.021
Motion or activity: their role in intra- and inter-subject variation in fMRI
T. Lund (2005)
10.1002/hbm.20219
Motion correction and the use of motion covariates in multiple‐subject fMRI analysis
T. Johnstone (2006)
10.1006/nimg.2001.1054
Image Distortion Correction in fMRI: A Quantitative Evaluation
C. Hutton (2002)
10.1002/HBM.460020402
Statistical parametric maps in functional imaging: A general linear approach
Karl J. Friston (1994)
10.1109/ICIP.1994.413892
Theory, simulation, and compensation of physiological motion artifacts in functional MRI
D. Noll (1994)
10.1016/j.neuroimage.2005.08.063
Strategies for block-design fMRI experiments during task-related motion of structures of the oral cavity
D. Soltysik (2006)
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
S. Thesen (2000)
10.1002/MRM.1910400210
Functional Imaging by I0‐ and T2* ‐parameter mapping using multi‐image EPI
O. Speck (1998)
10.1002/mrm.1240
Physiological noise in oxygenation‐sensitive magnetic resonance imaging
G. Krueger (2001)
10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1
Prospective multiaxial motion correction for fMRI
H. Ward (2000)
10.1002/mrm.20900
BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI
B. Poser (2006)
10.1002/mrm.1291
Motion correction of parametric fMRI data from multi‐slice single‐shot multi‐echo acquisitions
O. Speck (2001)
10.1006/nimg.1999.0515
Characterization and Correction of Interpolation Effects in the Realignment of fMRI Time Series
S. Grootoonk (2000)
10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C
Sources of distortion in functional MRI data
P. Jezzard (1999)
10.1002/MRM.1910310307
Artifacts due to stimulus correlated motion in functional imaging of the brain
J. Hajnal (1994)
10.1002/(SICI)1522-2586(199908)10:2<154::AID-JMRI7>3.0.CO;2-8
An image registration strategy for multi‐echo fMRI
T. Jonsson (1999)
10.1002/mrm.20934
Application of parallel imaging to fMRI at 7 Tesla utilizing a high 1D reduction factor
S. Moeller (2006)
10.1016/j.neuroimage.2004.07.039
Experimental designs and processing strategies for fMRI studies involving overt verbal responses
R. Birn (2004)
10.1002/MRM.1910350312
Movement‐Related effects in fMRI time‐series
Karl J. Friston (1996)
False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus.
A. Field (2000)
10.1002/mrm.10171
Generalized autocalibrating partially parallel acquisitions (GRAPPA)
M. Griswold (2002)
10.1002/mrm.10303
Application of sensitivity‐encoded echo‐planar imaging for blood oxygen level‐dependent functional brain imaging †
J. D. de Zwart (2002)
10.1006/nimg.1998.0424
Localization of Cardiac-Induced Signal Change in fMRI
M. Dagli (1999)
10.1016/S0730-725X(98)00191-X
High-resolution, multiple gradient-echo functional MRI at 1.5 T.
M. Barth (1999)
10.1016/j.neuroimage.2006.01.039
Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system
M. Zaitsev (2006)
10.1016/S1053-8119(03)00080-6
Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI)
C. Preibisch (2003)
10.1016/j.neuroimage.2005.04.039
Detecting and adjusting for artifacts in fMRI time series data
J. Diedrichsen (2005)
10.1006/nimg.2001.0746
Modeling Geometric Deformations in EPI Time Series
J. Andersson (2001)
10.1016/j.neuroimage.2004.12.027
Removing the effects of task-related motion using independent-component analysis
T. Kochiyama (2005)
10.1088/0031-9155/52/7/003
Theoretical optimization of multi-echo fMRI data acquisition.
P. Gowland (2007)
10.1002/MRM.1910030413
The intrinsic signal‐to‐noise ratio in NMR imaging
W. Edelstein (1986)



This paper is referenced by
10.1016/j.neuroimage.2010.04.243
Dual-echo EPI for non-equilibrium fMRI — Implications of different echo combinations and masking procedures
F. Beissner (2010)
eal-time automated spectral assessment of the BOLD response for eurofeedback at 3 and 7 T
ury Kousha (2013)
10.3389/fpsyg.2011.00384
From Reference to Sense: How the Brain Encodes Meaning for Speaking
L. Menenti (2012)
10.1016/j.neuroimage.2011.10.057
Multi-echo acquisition
S. Posse (2012)
10.1016/j.bandl.2012.12.003
Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study
K. Segaert (2013)
10.1098/rsta.2015.0188
Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field
C. Chang (2016)
10.1016/j.neuroimage.2016.12.027
Potential pitfalls when denoising resting state fMRI data using nuisance regression
M. Bright (2017)
10.1080/17470919.2017.1370010
Why we stay with our social partners: Neural mechanisms of stay/leave decision-making
Amber Heijne (2018)
Techniques for BOLD and blood volume weighted fMRI
A. Poser (2009)
10.1016/j.neuroimage.2013.08.007
BOLD sensitivity and SNR characteristics of parallel imaging-accelerated single-shot multi-echo EPI for fMRI
Saurabh Bhavsar (2014)
On the application of ultra-fast fMRI and high resolution multiband fMRI at high static field strengths
R. Boyacioglu (2014)
10.1016/j.neuroimage.2016.07.049
Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI
J. Gonzalez-Castillo (2016)
10.1016/j.neuroimage.2012.09.043
Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data
M. Bright (2013)
10.1523/JNEUROSCI.3180-15.2016
fMRI Syntactic and Lexical Repetition Effects Reveal the Initial Stages of Learning a New Language.
K. Weber (2016)
Structuring language: Contributions to the neurocognition of syntax
K. Segaert (2012)
10.1109/TMI.2011.2143424
BOLD Contrast and Noise Characteristics of Densely Sampled Multi-Echo fMRI Data
M. Chiew (2011)
10.1016/j.neuroimage.2011.01.042
fMRI of the brainstem using dual-echo EPI
F. Beissner (2011)
10.1002/mrm.24557
Constrained source space imaging: Application to fast, region‐based functional MRI
M. Chiew (2013)
Language processing in a conversation context
L. van der Schoot (2017)
10.1002/mrm.24119
Reference‐free unwarping of EPI data using dynamic off‐resonance correction with multiecho acquisition (DOCMA)
E. Visser (2012)
10.1016/j.bandl.2012.04.012
The neuronal infrastructure of speaking
L. Menenti (2012)
Characterization of the BOLD signal in functional MRI
T. Jonsson (2012)
10.1016/j.neuroimage.2015.06.089
Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T
R. Boyacioglu (2015)
10.1016/j.jneumeth.2013.05.002
Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T
Yury Koush (2013)
10.1101/558288
A deconvolution algorithm for multiecho functional MRI: Multiecho Sparse Paradigm Free Mapping
C. Caballero-Gaudes (2019)
10.1016/j.neuroimage.2016.09.008
Noise contributions to the fMRI signal: An overview
T. Liu (2016)
10.1007/978-1-4899-7591-1_7
Pulse Sequences for fMRI
D. Norris (2015)
10.1016/j.nicl.2016.07.008
Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury
D. Fraiman (2016)
10.1093/cercor/bhr249
Shared Syntax in Language Production and Language Comprehension—An fMRI Study
K. Segaert (2012)
10.1016/j.neuroimage.2019.116081
A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping
C. Caballero-Gaudes (2019)
10.3389/fpsyg.2014.00208
A little more conversation – the influence of communicative context on syntactic priming in brain and behavior
L. Schoot (2014)
10.3389/fnins.2019.00825
Resting State fMRI: Going Through the Motions
Sanam Maknojia (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar