Online citations, reference lists, and bibliographies.
← Back to Search

High-aspect-ratio Nanogap Electrodes For Averaging Molecular Conductance Measurements.

Sebastian M. Luber, F. Zhang, Simone Lingitz, A. Hansen, F. Scheliga, E. Thorn-Csányi, M. Bichler, M. Tornow
Published 2007 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
A method of fabricating a pair of closely spaced metal electrodes on the cleaved plane of a GaAs/AlGaAs heterostructure (see image) is presented. These smooth, coplanar electrodes oppose each other over a predetermined distance of a few nanometers, continuously over their entire width of tens of micrometers. This structure may be used for the determination of the average electrical conductance of molecules.
This paper references
10.1038/23912
Molecular-wire behaviour in p -phenylenevinylene oligomers
W. B. Davis (1998)
10.1088/0957-4484/16/8/034
Nanometre spaced electrodes on a cleaved AlGaAs surface
Sebastian M. Luber (2005)
10.1063/1.124354
Fabrication of metallic electrodes with nanometer separation by electromigration
H. Park (1999)
10.1021/JP062181I
Energy level and band alignment for GaAs-alkylthiol monolayer-Hg junctions from electrical transport and photoemission experiments.
Guy Nesher (2006)
10.1021/JA00467A001
Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms
N. L. Allinger (1977)
10.1038/nature03898
Measurement of the conductance of single conjugated molecules
T. Dadosh (2005)
10.1126/SCIENCE.1064354
Reproducible Measurement of Single-Molecule Conductivity
X. D. Cui (2001)
10.1021/NL025882+
Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules
Jeong-O Lee (2003)
10.1002/ADMA.200306091
Comparison of Electronic Transport Measurements on Organic Molecules
Adi Salomon (2003)
10.1038/nature04699
Towards molecular electronics with large-area molecular junctions
H. Akkerman (2006)
10.1021/NL048372J
Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer.
Y. Selzer (2005)
10.1021/JA00142A021
Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces
J. Tour (1995)
10.1063/1.120195
Nanoscale metal/self-assembled monolayer/metal heterostructures
C. Zhou (1997)
10.1149/1.2069311
Etch Rates and Selectivities of Citric Acid/Hydrogen Peroxide on GaAs , Al0.3Ga0.7As , In0.2Ga0.8As , In0.53Ga0.47As , In0.52Al0.48As , and InP
G. Desalvo (1992)
10.1021/JA058224A
Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers.
H. Haick (2006)
10.1063/1.1436275
Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography
K. Liu (2002)
10.1088/0957-4484/13/5/323
A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics
M. Saifullah (2002)
10.1103/PHYSREVB.64.035416
Self-consistent-field study of conduction through conjugated molecules
M. Paulsson (2001)
10.1126/SCIENCE.278.5336.252
Conductance of a Molecular Junction
M. Reed (1997)
10.1063/1.1528285
Fabrication of nanometer-spaced electrodes using gold nanoparticles
S. Khondaker (2002)
10.1063/1.123765
Controlled fabrication of metallic electrodes with atomic separation
A.F.Morpurgo (1999)
10.1039/B601163M
Electron transport and redox reactions in carbon-based molecular electronic junctions.
R. McCreery (2006)
10.1021/JA027090N
Effect of bond-length alternation in molecular wires.
J. G. Kushmerick (2002)
10.1002/ADMA.200502412
Experimental Approaches for Controlling Current Flowing through Metal-Molecules- Metal Junctions**
E. Tran (2006)
10.1063/1.103121
Formation of a high quality two-dimensional electron gas on cleaved GaAs
L. Pfeiffer (1990)
10.1016/S0009-2614(00)00468-1
Interactions between molecular wires and a gold surface
Å. Johansson (2000)
10.1063/1.1623317
Planar nanocontacts with atomically controlled separation
Y. Kervennic (2003)
10.1021/JP0361273
Nanowire-based molecular monolayer junctions: Synthesis, assembly, and electrical characterization
L. Cai (2004)



This paper is referenced by
10.1088/0957-4484/18/29/295201
A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution
S. Strobel (2007)
10.1002/smll.201100448
Self-aligned sub-10-nm nanogap electrode array for large-scale integration.
Pingqi Gao (2011)
10.1007/s40843-015-0092-8
Thermal induced single grain boundary break junction for suspended nanogap electrodes
Ajuan Cui (2015)
10.1002/9783527653454.CH4
Organic Circuits and Organic Single‐Molecule Transistors
Q. Tang (2013)
10.1039/B823158C
Conjugated 12 nm long oligomers as molecular wires in nanoelectronics
Roar R. Søndergaard (2009)
Transportphänomene in nano- und mikroskopischen Systemen
S. Verleger (2012)
10.1002/adma.201103098
Molecular crystal lithography: a facile and low-cost approach to fabricate nanogap electrodes.
Lang Jiang (2012)
10.1021/acs.chemrev.6b00595
Large-Area, Ensemble Molecular Electronics: Motivation and Challenges.
A. Vilan (2017)
10.1039/c0cp02718a
Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.
S. Strobel (2011)
10.1088/0957-4484/27/11/115302
Towards nanometer-spaced silicon contacts to proteins.
Muhammed Ihab Schukfeh (2016)
Photoresponsive gold nanoparticles : towards multi-functional organic electronics devices
C. Raimondo (2012)
10.1002/smll.200801400
Planar nanogap electrodes by direct nanotransfer printing.
S. Strobel (2009)
10.1088/0957-4484/21/33/335303
Nanotrench for nano and microparticle electrical interconnects.
J-F Dayen (2010)
10.1063/1.2895644
Nanogaps with very large aspect ratios for electrical measurements
A. Fursina (2008)
10.1088/0953-8984/20/37/374116
Alligator clips to molecular dimensions.
N. Prokopuk (2008)
10.1201/B12779-7
Nanotrenches: An Optical Lithography Process for High-Aspect-Ratio sub-100 nm Gaps
Faiz Rahman (2012)
10.1002/em.20545
Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells
Lucia Migliore (2010)
10.1088/0957-4484/25/46/465306
Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
M. I. Schukfeh (2014)
10.1021/nn102460z
Molecular bridging of silicon nanogaps.
G. J. Ashwell (2010)
10.1002/adma.201500527
Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.
Ajuan Cui (2015)
10.1142/S1793292015300029
Advantages of Prefabricated Tunnel Junction-Based Molecular Spintronics Devices
Pawan Tyagi (2015)
10.1021/nn400380g
Conductance enhancement of InAs/InP heterostructure nanowires by surface functionalization with oligo(phenylene vinylene)s.
M. I. Schukfeh (2013)
Silicon based nanogap device for investigating electronic transport through 12 nm long oligomers
S. Strobel (2009)
10.1088/0957-4484/22/6/065301
Cleaved-edge-overgrowth nanogap electrodes.
Sebastian M. Luber (2011)
10.1063/1.4804559
Tailoring palladium nanocontacts by electromigration
L. Arzubiaga (2013)
10.1088/0953-8984/20/37/374126
Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.
S. Strobel (2008)
10.1088/1742-6596/292/1/012002
Nano-electronics and spintronics with nanoparticles
S. Karmakar (2011)
10.4032/9789814364577
Nanotrenches: An Optical Lithography Process for High-Aspect-Ratio sub-100 nm Gaps
J-F Dayen (2012)
Semantic Scholar Logo Some data provided by SemanticScholar