Online citations, reference lists, and bibliographies.
← Back to Search

Planar Nanogap Electrodes By Direct Nanotransfer Printing.

S. Strobel, Stefan Harrer, G. Penso Blanco, G. Scarpa, G. Abstreiter, P. Lugli, M. Tornow
Published 2009 · Medicine, Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Planar nanogap electrodes of predetermined spacing are fabricated using direct high-resolution metal nanotransfer printing on a solid substrate (see image). A GaAs/AlGaAs heterostructure featuring a nanoscale groove on a cleaved plane is the mold. Successful transfer experiments yield sectioned metal thin films with gap separation down to about 10 nm having excellent electrical properties.
This paper references
10.1557/JMR.2001.0089
Comparison of hydrophilic properties of amorphous TiO x films obtained by radio frequency sputtering and plasma-enhanced chemical vapor deposition
Masatoshi Nakamura (2001)
10.1126/SCIENCE.1081940
Ultrahigh-Density Nanowire Lattices and Circuits
N. Melosh (2003)
10.1063/1.1623317
Planar nanocontacts with atomically controlled separation
Y. Kervennic (2003)
10.1088/0953-8984/20/37/374126
Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.
S. Strobel (2008)
10.1038/nature03898
Measurement of the conductance of single conjugated molecules
T. Dadosh (2005)
10.1109/NANO.2007.4601394
Advances in Nanoimprint Lithography
P. Lugli (2007)
10.1088/0957-4484/16/10/037
Electrical properties of Si-SiO(2)-Si nanogaps.
J. Berg (2005)
10.1063/1.1493226
Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics
Y. Loo (2002)
10.1063/1.2895644
Nanogaps with very large aspect ratios for electrical measurements
A. Fursina (2008)
10.1021/NL034207C
Electrical Contacts to Molecular Layers by Nanotransfer Printing
Y. Loo (2003)
10.1088/0957-4484/16/8/010
6 nm half-pitch lines and 0.04 νm 2 static random access memory patterns by nanoimprint lithography
M. D. Austin (2005)
10.1063/1.124354
Fabrication of metallic electrodes with nanometer separation by electromigration
H. Park (1999)
10.1063/1.123765
Controlled fabrication of metallic electrodes with atomic separation
A.F.Morpurgo (1999)
10.1088/0957-4484/16/10/001
Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures.
S. Dirk (2005)
10.1063/1.1433914
Nanometer-spaced electrodes with calibrated separation
Y. Kervennic (2002)
10.1038/nature04699
Towards molecular electronics with large-area molecular junctions
H. Akkerman (2006)
10.1063/1.1528285
Fabrication of nanometer-spaced electrodes using gold nanoparticles
S. Khondaker (2002)
10.1021/JA026355V
Interfacial chemistries for nanoscale transfer printing.
Y. Loo (2002)
10.1021/NL0344007
Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing
J. Zaumseil (2003)
10.1063/1.1495080
Fabrication of nanoscale gaps in integrated circuits
R. Krahne (2002)
10.1038/nature02010
Single-electron transistor of a single organic molecule with access to several redox states
S. Kubatkin (2003)
10.1021/NL025882+
Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules
Jeong-O Lee (2003)
10.1063/1.120195
Nanoscale metal/self-assembled monolayer/metal heterostructures
C. Zhou (1997)
10.1116/1.2713403
Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding
Dong-Yoon Jang (2007)
10.1063/1.1436275
Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography
K. Liu (2002)
10.1002/SMLL.200600389
High-aspect-ratio nanogap electrodes for averaging molecular conductance measurements.
Sebastian M. Luber (2007)
10.1088/0957-4484/16/8/034
Nanometre spaced electrodes on a cleaved AlGaAs surface
Sebastian M. Luber (2005)
10.1088/0957-4484/16/6/022
Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays
S. W. Howell (2005)
10.1088/0957-4484/18/29/295201
A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution
S. Strobel (2007)
10.1109/TNANO.2008.917782
Room Temperature Nanoimprint Lithography Using Molds Fabricated by Molecular Beam Epitaxy
Stefan Harrer (2008)
10.1088/0957-4484/13/5/323
A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics
M. Saifullah (2002)
10.1016/J.TSF.2005.06.078
Fabrication of Au–molecule–Au junctions using electromigration method
Y. Noguchi (2006)



This paper is referenced by
10.1039/c1nr10039d
Adhesive lithography for fabricating organic electronic and optoelectronics devices.
Zhe Wang (2011)
10.1088/0957-4484/22/6/065301
Cleaved-edge-overgrowth nanogap electrodes.
Sebastian M. Luber (2011)
10.1109/TNANO.2013.2261824
Bis-Ferrocene Molecular QCA Wire: Ab Initio Simulations of Fabrication Driven Fault Tolerance
A. Pulimeno (2013)
Modeling and Design of Single-Molecule Devices
Ahmed Mahmoud (2014)
10.1063/1.3615952
Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes
M. Bareiss (2011)
10.1109/TNANO.2009.2024685
Technology Assessment of a Novel High-Yield Lithographic Technique for Sub-15-nm Direct Nanotransfer Printing of Nanogap Electrodes
Stefan Harrer (2009)
10.3762/bjnano.3.14
Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits
J. Berson (2012)
10.1109/NANO.2015.7485973
High-yield metal transfer printing on alkyl bis-phosphonate monolayers
Anshuma Pathak (2015)
10.1039/c3nr06346a
Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon.
Hwan-Jin Jeon (2014)
10.1088/0034-4885/73/3/036501
Hybrid strategies in nanolithography
Hector M. Saavedra (2010)
10.1016/j.ijheatmasstransfer.2020.119751
Raman-based Nanoscale Thermal Transport Characterization: A Critical Review
S. Xu (2020)
10.1109/NANO.2011.6144516
Energy harvesting using nano antenna array
M. Bareiss (2011)
Light-induced electron motion in nanojunctions
Daniel Gerster (2012)
10.1021/la2009946
A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction.
A. Zeira (2011)
10.1016/J.APSUSC.2011.08.065
Selective gold nano-patterning on flexible polymer substrate via concurrent nanoimprinting and nanotransfer printing
J. Law (2011)
Nanotransfer Printing and Kinetic Monte Carlo Simulations of Metal-Oxide-Structures
B. Weiler (2016)
Nanodiodes and Nanoantennas Fabricated by Transfer Technology
M. Bareiss (2012)
10.1109/MMM.2010.938570
Nanoelectronics-Based Integrate Antennas
P. Russer (2010)
10.1080/00218464.2011.600670
Temperature Enhanced Large Area Nano Transfer Printing on Si/SiO2 Substrates Using Si Wafer Stamps
M. Bareiss (2011)
10.1016/J.TSF.2011.11.006
Direct transfer patterning of gold films with minimal processing steps
Omar Fakhr (2012)
10.1145/2738041
Process Variability and Electrostatic Analysis of Molecular QCA
M. Graziano (2015)
10.1002/aelm.201901091
Colossal Tunneling Electroresistance in Co‐Planar Polymer Ferroelectric Tunnel Junctions
Manasvi Kumar (2020)
10.1002/ADFM.201805795
Individual Confinement of Block Copolymer Microdomains in Nanoscale Crossbar Templates
Woon Ik Park (2018)
10.1063/1.4946037
Electrical and morphological characterization of transfer-printed Au/Ti/TiOx/p+-Si nano- and microstructures with plasma-grown titanium oxide layers
B. Weiler (2016)
10.1038/s41378-019-0100-3
Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates
Mengjie Zheng (2019)
Pattern generation by using high-resolution nanoimprinting and nanotransfer printing techniques
G. Scarpa (2009)
Semantic Scholar Logo Some data provided by SemanticScholar