Online citations, reference lists, and bibliographies.

Quantification Of Human Brain Metabolites From In Vivo 1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis.

Y. Hiltunen, J. Kaartinen, J. Pulkkinen, A. Häkkinen, N. Lundbom, R. Kauppinen
Published 2002 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo 1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.
This paper references
10.1002/(SICI)1099-1492(199806/08)11:4/5<177::AID-NBM534>3.0.CO;2-U
Towards a method for automated classification of 1H MRS spectra from brain tumours.
A. Tate (1998)
10.1006/jmrb.1995.1032
Lipoprotein-lipid quantification by neural-network analysis of 1H NMR data from human blood plasma.
Y. Hiltunen (1995)
10.1002/mrm.1910300604
Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
S. Provencher (1993)
Clinical applications of magnetic resonance spectroscopy.
B. Ross (1994)
10.1038/nm0396-323
Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy
M. Preul (1996)
10.1016/0022-2364(92)90241-X
SVD-based quantification of magnetic resonance signals
W. W. Pijnappel (1992)
10.1006/JMRE.1999.1960
Frequency-selective quantification of biomedical magnetic resonance spectroscopy data.
L. Vanhamme (2000)
10.1016/0968-0004(94)90050-7
NMR studies of human brain function.
R. Shulman (1994)
10.1006/JMRE.2000.2102
A time-domain algorithm for NMR spectral normalization.
R. Romano (2000)
10.1006/JMRE.1999.1895
Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain.
J. Pfeuffer (1999)
10.1097/00001756-199607080-00013
Automated classification of human brain tumours by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes.
J. P. Usenius (1996)
10.1097/00002142-199300520-00006
In vivo magnetic resonance spectroscopy of human brain tumors
P. Barker (1993)
Mathematics in signal processing V
M. Davies (2002)
10.1097/00004728-199409000-00005
Quantitative Metabolite Patterns of Human Brain Tumors: Detection by 1H NMR Spectroscopy In Vivo and In Vitro
J. P. Usenius (1994)
10.1006/JMRE.1998.1477
Automated quantification of human brain metabolites by artificial neural network analysis from in vivo single-voxel 1H NMR spectra.
J. Kaartinen (1998)



This paper is referenced by
10.1007/978-3-642-17625-8_26
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
George A. Papakostas (2010)
10.1002/mrc.4960
2D subband Steiglitz-McBride algorithm for automatic analysis of 2D-NMR data.
Muhammad Ali Raza Anjum (2019)
10.1016/j.nic.2008.08.002
Proton magnetic resonance spectroscopy in multiple sclerosis.
Balasrinivasa R Sajja (2009)
10.1021/ja01601a091
Nuclear Magnetic Resonance
Hans-Ferdinand Linskens (2011)
10.1016/j.neucom.2015.10.025
Curvature manipulation of the spectrum of Valence-Arousal-related fMRI dataset using Gaussian-shaped Fast Fourier Transform and its application to fuzzy KANSEI adjectives modeling
Ting He (2016)
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
Morgan Chandler (2019)
10.1097/RMR.0b013e31821e568f
Quantitative Proton Magnetic Resonance Spectroscopy and Spectroscopic Imaging of the Brain: A Didactic Review
J. Alger (2010)
10.1016/j.jmr.2012.12.009
Estimation of petrophysical and fluid properties using integral transforms in nuclear magnetic resonance.
Fred K. Gruber (2013)
10.1155/2011/158094
Artificial Neural Networks for Classification in Metabolomic Studies of Whole Cells Using 1H Nuclear Magnetic Resonance
Dermot F Brougham (2011)
10.1109/IST.2010.5548469
On quantifying MRS metabolites using a constrained Genetic Algorithm
G.A. Papakostas (2010)
10.1016/J.JMR.2007.03.015
Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra.
J. Poullet (2007)
10.1016/J.EJRAD.2005.03.018
Independent component analysis to proton spectroscopic imaging data of human brain tumours.
J. Pulkkinen (2005)
Artificial Neural Networks for Classification inMetabolomic Studies ofWhole Cells Using 1 H Nuclear Magnetic Resonance
Dermot F Brougham (2010)
10.1007/978-3-540-45080-1_71
Quantification of Human Brain Metabolites from In Vivo 1H NMR Magnitude Spectra Using Self-Organising Maps
J. Pulkkinen (2003)
Evolutionary computing techniques to aid the acquisition and analysis of nuclear magnetic resonance data
H. F. Gray (2007)
10.1002/NBM.1123
1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps.
T. Suna (2007)
10.1016/j.jmr.2008.09.005
MRS signal quantitation: a review of time- and frequency-domain methods.
J. Poullet (2008)
Quantification Improvements of 1 H MRS Signals
M. I. Osorio-Garcia (2017)
10.1248/YAKUSHI.132.499
Imaging mass spectrometry
Mitsutoshi Setou (2010)
10.1016/J.CONENGPRAC.2011.01.007
Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation
M. Hosen (2011)
10.1002/mrm.27641
Incorporation of a spectral model in a convolutional neural network for accelerated spectral fitting.
S. Gurbani (2019)
QUANTIFICATION AND CLASSIFICATION OF MAGNETIC RESONANCE SPECTROSCOPIC DATA FOR BRAIN TUMOR DIAGNOSIS
Faculteit Ingenieurswetenschappen (2008)
10.1016/B978-0-12-394297-5.00004-0
Chapter 4 - Imaging Mass Spectrometry: Sample Preparation, Instrumentation, and Applications
K. Shrivas (2012)
10.1088/0957-0233/22/11/114004
In vivo MRS metabolite quantification using genetic optimization
George A. Papakostas (2011)
10.1007/3-540-45675-9_63
Application of Self-Organising Maps in Automated Chemical Shift Correction of In Vivo H MR Spectra
J. Pulkkinen (2002)
10.1016/J.JMR.2006.08.004
Fast quantification of proton magnetic resonance spectroscopic imaging with artificial neural networks.
Himanshu Bhat (2006)
10.1109/IST.2009.5071602
Dealing with peaks overlapping issue in quantifying metabolites in MRSI
G.A. Papakostas (2009)
10.1002/9780470034590.EMRSTM0534.PUB2
Stray‐Field (STRAFI) NMR: Imaging in Large Field Gradients
E. W. Randall (2007)
Maximum likelihood estimation in signal analysis of MR spectroscopy
Pia Löthgren (2012)
10.11606/D.76.2013.TDE-12022014-075510
KBDM como ferramenta para processamento de sinais de Espectroscopia por Ressonância Magnética
Cintia Pereira da Silva (2013)
10.1109/IJCNN.2014.6889463
Control of methylamine removal reactor using neural network based model predictive control
Liu Zhi Long (2014)
Semantic Scholar Logo Some data provided by SemanticScholar