Online citations, reference lists, and bibliographies.

Automatic Detection Of Microaneurysms In Color Fundus Images Of The Human Retina By Means Of The Bounding Box Closing

T. Walter, Jean-Claude Klein
Published 2002 · Computer Science

Cite This
Download PDF
Analyze on Scholarcy
Share
In this paper we propose a new algorithm for the detection of microaneurysms in color fundus images of the human retina. Microaneurysms are the first unequivocal indication of Diabetic Retinopathy (DR), a severe and wide-spread eye disease. Their automatic detection may play a major role in computer assisted diagnosis of DR. We propose an algorithm that can be divided into four steps. The first step is an image enhancement technique that comprises normalization and noise reduction. The second step ist the extraction of small details that fulfill a certain criterion: This leads to the definition of the bounding box closing. Then, an automatic threshold depending on image quality is calculated. In the last step false positives are eliminated.
This paper references
10.1016/S0010-4825(98)00011-0
A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms.
A. Frame (1998)
and P
M. J. Cree (1996)
ent, \Morphologi al area openings and losings for grays ale images," Shape in pi ture, NATO workshop, Driebergen
L. Vin (1992)
Une approche morphologique pour les détections et Bayésienne pour le recalage d'images multimodalesPplication aux images rétiniennes
F. Zana (1999)
A omparison of omputer based lassi ation methods applied to the dete tion of mi roaneurysms in ophthalmi uores ein angiograms,
A. Frame (1998)
R etinopathie Diab ethique, vol
P. Massin (2000)
Mendon a et al., \Automati segmentation of mi roaneurysms in retinal angiograms of diabeti patients,
A M. (1999)
10.1007/3-540-45497-7_43
Segmentation of Color Fundus Images of the Human Retina: Detection of the Optic Disc and the Vascular Tree Using Morphological Techniques
T. Walter (2001)
An image pro essing strategy for the segmentation and quanti ation of my roaneurysms in uores ein angiograms of the o ular fundus,
T. Spen er (1996)
10.1109/ICIP.1996.560763
Automated microaneurysm detection
M. Cree (1996)
10.1108/sr.2000.08720cae.001
Morphological Image Analysis: Principles and Applications
P. Soille (2003)
Analyse automatique des images angio uorographiques au ours de la r etinopathie diab etique
B. Lay (1983)
\ Segmentation of olor fundus images of the human retina : Dete tion of the opti dis and the vas ular tree using morphologi al te hniques
J.-C. Klein (1999)
\ Identi ation of individual mi roaneurysms : A omparison between uores ein angiograms and redfree and olour photographs
E. Vesti T. Hellstedt (1998)
10.1006/CBMR.1996.0021
An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus.
T. Spencer (1996)
10.1007/978-3-662-05088-0
Morphological Image Analysis
P. Soille (1999)
\ Automati segmentation of mi roaneurysms in retinal angiograms of diabeti patients
A. M. Mendon
10.1109/ICIAP.1999.797681
Automatic segmentation of microaneurysms in retinal angiograms of diabetic patients
A. Mendonça (1999)



This paper is referenced by
Retinal Microaneurysm Detection Based on Intensity Profile Analysis
I. Lázár (2010)
10.13053/CYS-20-4-2305
Exudates and Blood Vessel Segmentation in Eye Fundus Images using the Fourier and Cosine Discrete Transforms
Luis David Lara-Rodríguez (2016)
Eye Fundus Image Analysis for Automatic Detection of Diabetic Retinopathy
T. Kauppi (2010)
10.1109/SACI.2014.6840093
Manual microaneurysm detection support with size- and shape-based detection
Petra Varsanyi (2014)
Indexation et fusion multimodale pour la recherche d'informations par le contenu : Application aux bases de données d'images médicales
G. Quellec (2008)
10.5220/0003155902350241
Combining Particle Swarm Optimisation with Genetic Algorithm for Contextual Analysis of Medical Images
Jonathan Goh (2011)
10.1007/978-981-10-2717-8_10
Pathologies Segmentation in Eye Fundus Images Based on Frequency Domain Filters
Gonzalo Urcid (2015)
10.32657/10356/62523
Biomedical imaging informatics in ocular disease diagnosis
Zhang Zhuo (2015)
10.1117/12.812088
Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images
C. Sánchez (2009)
Detection and Grading of Diabetic Retinopathy in Fundus Retinal Images
Pooja G.Shetty (2014)
An Ensemble based System for Detection of Retinal Microaneurysms and Diabetic Retinopathy Miss
D. Patil (2014)
A Review of Various Retinal Microaneurysm Detection Methods For Grading Of Diabetic Retinopathy
Mrs. R. Jayanthi (2016)
10.1007/978-3-319-11071-4_11
Automatic Screening and Classification of Diabetic Retinopathy Fundus Images
Sarni Suhaila Rahim (2014)
Automated Analysis of Longitudinal Changes in Color Retinal Fundus Images for Monitoring Diabetic Retinopathy
H. Narasimha-Iyer (2004)
10.1117/1.JBO.21.10.101404
Automated microaneurysm detection in diabetic retinopathy using curvelet transform
Syed Ayaz Ali Shah (2016)
10.18280/ama_b.600306
Review of Preprocessing Techniques for Fundus Image Analysis
Shilpa Joshi (2017)
10.1016/j.csbj.2016.10.001
A review on automatic analysis techniques for color fundus photographs
R. Besenczi (2016)
10.1007/s10044-017-0630-y
Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey
T. Soomro (2017)
10.1142/S0219519417501081
EFFICIENT DETECTION OF MICRO-ANEURYSMS IN RETINAL IMAGES FOR EARLY DIAGNOSIS OF DIABETIC RETINOPATHY
Amel Feroui (2017)
Automated Microaneurysm Detection And Diabetic Retinopathy Grading
Sharvari Patil (2013)
10.1016/j.cmpb.2020.105398
Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening
H. Wang (2020)
10.1007/s10278-009-9246-0
Automatic Detection of Microaneurysms and Hemorrhages in Digital Fundus Images
Giri Babu Kande (2009)
10.1016/j.patcog.2011.06.010
Improving microaneurysm detection using an optimally selected subset of candidate extractors and preprocessing methods
Bálint Antal (2012)
10.1109/BigMM.2016.65
Fast Detection of Microaneurysms in Color Fundus Images
Sean H. F. Chen (2016)
10.5281/ZENODO.42119
Improving microaneurysm detection in color fundus images by using an optimal combination of preprocessing methods and candidate extractors
Bálint Antal (2010)
10.1109/IGEHT.2017.8094065
A survey on classification techniques in biometric retinal system
B. M. S. Rani (2017)
10.1007/s13410-018-0632-3
A critical review of red lesion detection algorithms using fundus images
Shilpa Joshi (2018)
10.1186/1472-6947-14-80
A survey on computer aided diagnosis for ocular diseases
Z. Zhang (2014)
10.1109/IEMBS.2011.6091469
Evaluation of the grading performance of an ensemble-based microaneurysm detector
B. Antal (2011)
10.21936/si2004_v25.n3.603
Automatic detection of early symptoms of diabetic retinopathy from fundus eye images using mathematical morphology
K. Stapor (2004)
10.1109/EMBC.2019.8857073
Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features
B. Harangi (2019)
10.1109/TMI.2006.879953
Automated microaneurysm detection using local contrast normalization and local vessel detection
A. Fleming (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar