Online citations, reference lists, and bibliographies.

Automatic Detection Of Microaneurysms In Color Fundus Images Of The Human Retina By Means Of The Bounding Box Closing

Thomas Walter, Jean-Claude Klein
Published 2002 · Computer Science
Cite This
Download PDF
Analyze on Scholarcy
In this paper we propose a new algorithm for the detection of microaneurysms in color fundus images of the human retina. Microaneurysms are the first unequivocal indication of Diabetic Retinopathy (DR), a severe and wide-spread eye disease. Their automatic detection may play a major role in computer assisted diagnosis of DR. We propose an algorithm that can be divided into four steps. The first step is an image enhancement technique that comprises normalization and noise reduction. The second step ist the extraction of small details that fulfill a certain criterion: This leads to the definition of the bounding box closing. Then, an automatic threshold depending on image quality is calculated. In the last step false positives are eliminated.
This paper references
Une approche morphologique pour les détections et Bayésienne pour le recalage d'images multimodalesPplication aux images rétiniennes
Frédéric Zana (1999)
An image pro essing strategy for the segmentation and quanti ation of my roaneurysms in uores ein angiograms of the o ular fundus,
T. Spen er (1996)
\ Automati segmentation of mi roaneurysms in retinal angiograms of diabeti patients
A. M. Mendon
Identification of individual microaneurysms: A comparison between fluorescein angiograms and red-free and colour photographs
Timo Hellstedt (2006)
A omparison of omputer based lassi ation methods applied to the dete tion of mi roaneurysms in ophthalmi uores ein angiograms,
A. Frame (1998)
ent, \Morphologi al area openings and losings for grays ale images," Shape in pi ture, NATO workshop, Driebergen
L. Vin (1992)
and P
M. J. Cree (1996)
Segmentation of Color Fundus Images of the Human Retina: Detection of the Optic Disc and the Vascular Tree Using Morphological Techniques
Thomas Walter (2001)
Mendon a et al., \Automati segmentation of mi roaneurysms in retinal angiograms of diabeti patients,
A M. (1999)
R etinopathie Diab ethique, vol
P. Massin (2000)
\ Identi ation of individual mi roaneurysms : A omparison between uores ein angiograms and redfree and olour photographs
E. Vesti T. Hellstedt (1998)
\ Segmentation of olor fundus images of the human retina : Dete tion of the opti dis and the vas ular tree using morphologi al te hniques
J.-C. Klein (1999)
Analyse automatique des images angio uorographiques au ours de la r etinopathie diab etique
B. Lay (1983)

This paper is referenced by
Biomedical imaging informatics in ocular disease diagnosis
Zhang Zhuo (2015)
Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey
Toufique Ahmed Soomro (2017)
International Journal of Scientific Research in Computer Science, Engineering and Information Technology
S. Karthika (2017)
Exudates and Blood Vessel Segmentation in Eye Fundus Images using the Fourier and Cosine Discrete Transforms
Luis David Lara-Rodríguez (2016)
Combining Particle Swarm Optimisation with Genetic Algorithm for Contextual Analysis of Medical Images
Jonathan Goh (2011)
Retinal Microaneurysm Detection Based on Intensity Profile Analysis
István Lázár (2010)
M. Muthu Rama Krishnan (2013)
Automated microaneurysm detection using local contrast normalization and local vessel detection
Alan D. Fleming (2006)
Detection and Grading of Diabetic Retinopathy in Fundus Retinal Images
Pooja G.Shetty (2014)
An Ensemble based System for Detection of Retinal Microaneurysms and Diabetic Retinopathy Miss
Deepa G. Patil (2014)
Indexation et fusion multimodale pour la recherche d'informations par le contenu : Application aux bases de données d'images médicales
Gwénolé Quellec (2008)
Manual microaneurysm detection support with size- and shape-based detection
Petra Varsanyi (2014)
A review on automatic analysis techniques for color fundus photographs
Renátó Besenczi (2016)
Review of Preprocessing Techniques for Fundus Image Analysis
Shilpa Joshi (2017)
Eye Fundus Image Analysis for Automatic Detection of Diabetic Retinopathy
Tomi Kauppi (2010)
A Review of Various Retinal Microaneurysm Detection Methods For Grading Of Diabetic Retinopathy
Mrs. R. Jayanthi (2016)
Automatic Screening and Classification of Diabetic Retinopathy Fundus Images
Sarni Suhaila Rahim (2014)
A survey on classification techniques in biometric retinal system
B. M. S. Rani (2017)
A survey on computer aided diagnosis for ocular diseases
Zhuo Zhang (2014)
A critical review of red lesion detection algorithms using fundus images
Shilpa Joshi (2018)
Improving microaneurysm detection using an optimally selected subset of candidate extractors and preprocessing methods
Bálint Antal (2012)
Improving microaneurysm detection in color fundus images by using an optimal combination of preprocessing methods and candidate extractors
Bálint Antal (2010)
Fast Detection of Microaneurysms in Color Fundus Images
Sean H. F. Chen (2016)
An Ensemble-Based System for Microaneurysm Detection and Diabetic Retinopathy Grading
Bálint Antal (2012)
Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images
Agurto Rios (2013)
Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels
Ruchir Srivastava (2017)
Automated Analysis of Longitudinal Changes in Color Retinal Fundus Images for Monitoring Diabetic Retinopathy
Harihar Narasimha-Iyer (2004)
Automated microaneurysm detection in diabetic retinopathy using curvelet transform
Syed Ayaz Ali Shah (2016)
The Reading of Components of Diabetic Retinopathy: An Evolutionary Approach for Filtering Normal Digital Fundus Imaging in Screening and Population Based Studies
Hongying Lilian Tang (2013)
Finding the optimal parameter setting for an ensemble-based lesion detector
Janos Toth (2014)
Improving microaneurysm detection in color fundus images by using context-aware approaches
Bálint Antal (2013)
Automatic detection of early symptoms of diabetic retinopathy from fundus eye images using mathematical morphology
Katarzyna Stapor (2004)
See more
Semantic Scholar Logo Some data provided by SemanticScholar