Online citations, reference lists, and bibliographies.

Targeting Small Molecules And Peptides To The P66-p51 Reverse Transcriptase Interface

Daouda Mousatpha Abba Moussa, Audrey Agopian, Gilles Divita
Published 2013 · Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Thirty years after the discovery of human immunodeficiency virus (HIV) (Sepkowitz 2001), the causative agent of acquired immunodeficiency syndrome (HIV/AIDS), and the successful development and approval of antiretroviral drugs, no curative treatment is available (Simon et al. 2006; Saliba and Yeni 2006; Sarafianos et al. 2004). Therefore, there remains an urgent need for new and less toxic drugs that are either active against the emerging drug-resistant viruses or directed to novel targets in the replication cycle, which may complement multidrug combinations. A better understanding of individual steps of the viral replication cycle and of the dynamics during infection has provided major breakthroughs for the development of a wide spectrum of antiviral strategies (Sarafianos et al. 2004; Camarasa et al. 2006). Recently, in order to offer new perspectives for the design of inhibitors, extensive efforts have been made in the synthesis of molecules that target the interface of multi-subunit proteins required for virus entry, replication, and maturation (Camarasa et al. 2006; Divita et al. 1994; Mori et al. 2011; Esposito et al. 2012; Warrilow et al. 2009).
This paper references
10.1046/J.1432-1033.2002.03216.X
Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules.
N. Sluis-Cremer (2002)
10.1016/J.ANTIVIRAL.2006.05.021
Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes?
M. Camarasa (2006)
Mutating the "primer grip" of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization.
P. Jacques (1994)
10.1074/jbc.270.48.28642
Interface Peptides as Structure-based Human Immunodeficiency Virus Reverse Transcriptase Inhibitors (*)
G. Divita (1995)
10.1186/1742-4690-2-10
Molecular strategies to inhibit HIV-1 replication
M. H. Nielsen (2004)
10.1089/088922202760072339
Attenuated infectivity of HIV type 1 from epithelial cells pretreated with a tight-binding nonnucleoside reverse transcriptase inhibitor.
G. Borkow (2002)
The effect of NNRTIs on HIV reverse transcriptase dimerization.
G. Tachedjian (2003)
10.1073/pnas.90.13.6320
Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA.
A. Jacobo-Molina (1993)
10.1016/S1054-3589(00)49024-1
Inhibitors of HIV- I reverse transcriptase
M. Parniak (2000)
Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention.
T. Restle (1990)
10.2174/1570162043351093
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
N. Sluis-Cremer (2004)
10.1021/BI9914558
The thumb domain of the P51-subunit is essential for activation of HIV reverse transcriptase.
M. Morris (1999)
10.1073/PNAS.97.12.6334
Analysis of mutations and suppressors affecting interactions between the subunits of the HIV type 1 reverse transcriptase.
G. Tachedjian (2000)
10.1073/pnas.92.4.1222
The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1.
D. Rodgers (1995)
10.1007/978-1-4757-9209-6_35
Antiretroviral drug resistance: mechanisms, pathogenesis, clinical significance.
D. Richman (1996)
Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5 "- (4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine (TSAO-T).
J. Balzarini (1992)
10.1074/jbc.M802199200
A New Generation of Peptide-based Inhibitors Targeting HIV-1 Reverse Transcriptase Conformational Flexibility*
A. Agopian (2009)
10.1126/science.7532321
Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors
R. A. Spence (1995)
10.1038/nrd703
Strategies in the design of antiviral drugs
E. Clercq (2002)
10.1021/bi00082a018
Kinetics of interaction of HIV reverse transcriptase with primer/template.
G. Divita (1993)
10.1073/pnas.91.15.7242
Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer.
J. Wang (1994)
10.1016/j.jmb.2008.10.071
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
S. Sarafianos (2009)
10.1128/AAC.39.12.2602
L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase.
S. D. Young (1995)
Reverse Transcriptase and the Generation of Retroviral DNA
A. Telesnitsky (1997)
10.1038/nature06941
Dynamic binding orientations direct activity of HIV reverse transcriptase
E. Abbondanzieri (2008)
10.1124/MOL.62.2.398
Destabilization of the HIV-1 reverse transcriptase dimer upon interaction with N-acyl hydrazone inhibitors.
N. Sluis-Cremer (2002)
Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain.
G. Divita (1994)
10.1002/med.20241
HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design.
P. Zhan (2013)
10.1016/J.DRUDIS.2006.12.011
Targeting structural flexibility in HIV-1 protease inhibitor binding.
Viktor Hornak (2007)
10.1126/science.6189183
Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).
F. Barré-Sinoussi (1983)
10.1155/2012/586401
HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions
F. Esposito (2012)
10.1371/journal.ppat.0020119
Potent Nonnucleoside Reverse Transcriptase Inhibitors Target HIV-1 Gag-Pol
A. Figueiredo (2006)
10.2174/138161211798220972
Targeting protein-protein and protein-nucleic acid interactions for anti-HIV therapy.
M. Mori (2011)
10.1016/J.JMB.2007.07.044
p66 Trp24 and Phe61 are essential for accurate association of HIV-1 reverse transcriptase with primer/template.
A. Agopian (2007)
10.1146/annurev.bi.63.070194.001025
The retroviral enzymes.
R. Katz (1994)
10.1126/SCIENCE.282.5394.1669
Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance.
H. Huang (1998)
10.1021/bi00050a014
Conformational stability of dimeric HIV-1 and HIV-2 reverse transcriptases.
G. Divita (1995)
10.1016/S0140-6736(06)69157-5
HIV/AIDS epidemiology, pathogenesis, prevention, and treatment
V. Simon (2006)
10.1021/BI991682+
Human immunodeficiency virus type 1 reverse transcriptase dimer destabilization by 1-[Spiro[4"-amino-2",2" -dioxo-1",2" -oxathiole-5",3'-[2', 5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]]]-3-ethylthy mine.
N. Sluis-Cremer (2000)
10.1126/science.2418504
Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV.
F. di Marzo Veronese (1986)
10.1006/jmbi.1994.0042
Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process.
G. Divita (1995)
10.1016/J.COPH.2004.07.005
New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections.
R. Pauwels (2004)
10.1016/S0022-2836(02)01225-1
Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.
T. S. Fisher (2003)
10.1038/nbt1201-1173
A peptide carrier for the delivery of biologically active proteins into mammalian cells
M. Morris (2001)
Mechanism and fidelity of HIV reverse transcriptase.
W. Kati (1992)
10.1093/emboj/cdf637
Structures of HIV‐1 reverse transcriptase with pre‐ and post‐translocation AZTMP‐terminated DNA
S. Sarafianos (2002)
10.1016/J.SBI.2004.10.013
Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.
S. Sarafianos (2004)
10.1073/pnas.89.10.4392
2',5'-Bis-O-(tert-butyldimethylsilyl)-3'-spiro-5''-(4''-amino-1'',2''- oxathiole-2'',2'-dioxide)pyrimidine (TSAO) nucleoside analogues: highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase.
J. Balzarini (1992)
10.1016/S0165-6147(02)02054-0
Targeting HIV: antiretroviral therapy and development of drug resistance.
L. Menéndez-Arias (2002)
10.1002/rmv.627
Maturation of the HIV reverse transcription complex: putting the jigsaw together.
D. Warrilow (2009)
10.1002/cbic.200700669
Small Molecule Inhibitors Targeting HIV‐1 Reverse Transcriptase Dimerization
Dina Grohmann (2008)
10.1016/S0022-2836(02)01433-X
Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization.
G. Tachedjian (2003)
10.1016/j.virusres.2008.01.002
Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors.
N. Sluis-Cremer (2008)
10.1126/science.7824947
HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy
J. Coffin (1995)
10.1021/BI051915Z
Effects of efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase.
C. F. Venezia (2006)
10.1038/NRD2294
New HIV drug classes on the horizon
Alisa Opar (2007)
10.2210/pdb1rtj/pdb
Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors
R. Esnouf (1995)
10.1056/NEJM200106073442306
AIDS--the first 20 years.
K. Sepkowitz (2001)
10.1006/ABBI.1999.1209
HIV-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction.
M. Götte (1999)
10.4137/DTI.S0
Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding
J. Wapling (2007)
10.1016/J.VIROL.2004.08.010
Characterization of human immunodeficiency virus type 1 Pr160 gag-pol mutants with truncations downstream of the protease domain.
Wei-Hao Liao (2004)
10.1093/nar/25.14.2730
A new peptide vector for efficient delivery of oligonucleotides into mammalian cells.
M. Morris (1997)
Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli.
B. Müller (1989)
10.1126/science.1377403
Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor.
L. A. Kohlstaedt (1992)
Structure-function relationships of HIV-1 reverse transcriptase determined using monoclonal antibodies.
T. Restle (1992)
10.1016/0014-5793(93)81383-B
Characterization of the dimerization process of HIV‐1 reverse transcriptase heterodimer using intrinsic protein fluorescence
G. Divita (1993)
10.1016/J.BIOCEL.2004.02.020
Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation.
N. Sluis-Cremer (2004)
10.1126/science.3277274
The human immunodeficiency virus: infectivity and mechanisms of pathogenesis.
A. S. Fauci (1988)
10.1074/jbc.271.9.4872
Human Immunodeficiency Virus Reverse Transcriptase
B. Kim (1996)
10.1016/j.febslet.2004.11.099
Efavirenz enhances the proteolytic processing of an HIV‐1 pol polyprotein precursor and reverse transcriptase homodimer formation
G. Tachedjian (2005)
10.1002/CBDV.200490012
Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future.
E. Clercq (2004)
10.1073/pnas.222366699
Structure of HIV-2 reverse transcriptase at 2.35-Å resolution and the mechanism of resistance to non-nucleoside inhibitors
J. Ren (2002)
10.2174/138161206776873590
Dimerization of human immunodeficiency virus type 1 reverse transcriptase as an antiviral target.
S. Srivastava (2006)
10.1073/pnas.92.17.8046
Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors.
K. Rittinger (1995)
10.1016/J.PATBIO.2006.07.021
Recent and future therapeutic advances in the management of HIV infection.
G. Saliba (2006)
10.1073/pnas.121055998
Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase
G. Tachedjian (2001)
10.1038/nsmb.1937
Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription
S. Liu (2010)
10.1128/jvi.69.6.3878-3884.1995
Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing.
G. Zybarth (1995)
10.2174/157016208783885065
Impact of residues in the nonnucleoside reverse transcriptase inhibitor binding pocket on HIV-1 reverse transcriptase heterodimer stability.
A. Figueiredo (2008)
10.1021/BI0484264
Insight into the mechanism of a peptide inhibitor of HIV reverse transcriptase dimerization.
Julien Depollier (2005)
10.1074/JBC.M200282200
Substitutions of Phe61 Located in the Vicinity of Template 5′-Overhang Influence Polymerase Fidelity and Nucleoside Analog Sensitivity of HIV-1 Reverse Transcriptase*
T. S. Fisher (2002)
10.1006/JMBI.1998.1968
Characterization of human immunodeficiency virus type-1 (HIV-1) particles that express protease-reverse transcriptase fusion proteins.
E. Cherry (1998)
10.1074/jbc.274.35.24941
A New Potent HIV-1 Reverse Transcriptase Inhibitor
M. Morris (1999)



Semantic Scholar Logo Some data provided by SemanticScholar