Online citations, reference lists, and bibliographies.

X-Ray Photoelectron Spectroscopy (XPS) And Auger Electron Spectroscopy (AES)

R. Haasch
Published 2014 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), and Auger electron spectroscopy (AES) are widely used materials characterization techniques belonging to the general class of methods referred to as surface analysis. These non-destructive techniques provide, to varying degrees, semi-quantitative elemental, chemical-state and electronic-structure information from the top 10 nm of a material and are sensitive to elements Li and above. XPS and Auger have both found applications over a vast range of material classes; such as metallic, ceramic, polymeric, and composite; and technologies such as microelectronics, solar energy, and nanotechnology. Modern spectrometers are now not only capable of achieving high-energy resolution spectroscopy, but are also capable of 2-dimensional imaging.
This paper references
10.1116/11.20121004
The Si3N4/TiN Interface: 4. Si3N4/TiN(001) Grown with a −250 V Substrate Bias and Analyzed In situ using Angle-resolved X-ray Photoelectron Spectroscopy
Richard T Haasch (2012)
10.1103/PhysRev.91.1382
AUGER PEAKS IN THE ENERGY SPECTRA OF SECONDARY ELECTRONS FROM VARIOUS MATERIALS
J. Lander (1953)
10.1021/j100341a095
Attenuation Lengths of Photoelectrons in Hydrocarbon Films
C. Bain (1989)
10.1016/B978-0-12-341830-2.50008-X
Local Electronic Structure Information in Auger Electron Spectroscopy: Solid Surfaces
Jack E. Houston (1988)
10.1063/1.1466528
Band gap in epitaxial NaCl-structure CrN(001) layers
D. Gall (2002)
10.1021/ja010367j
Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays.
Y. Harada (2001)
AES Depth Profiling: An Example © 2008 University of Illinois Board of Trustees. All rights reserved. 63 (cross section) AES Depth Profiling: An Example 64
10.1007/BF01326962
Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen
L. Meitner (1922)
10.1088/0031-9112/31/9/055
Thermal Physics (2nd edn)
D. Tilley (1980)
10.1002/sia.740171304
Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range
S. Tanuma (1991)
10.1016/c2013-0-07368-9
Treatise on Materials Science and Technology
H. Herman (1979)
Calculations of Electron Inelastic Mean Free Paths II. Data for 27 Elements over the 50-2000 eV Range | NIST
S. Tanuma (1991)
10.1103/PhysRevB.25.4452
Influence of elastic and inelastic scattering on energy spectra of electrons emitted from solids
S. Tougaard (1982)
10.1002/SIA.1997
Calculations of electron inelastic mean free paths
S. Tanuma (2005)
10.1063/1.1652989
HIGH SENSITIVITY AUGER ELECTRON SPECTROMETER
P. W. Palmberg (1969)
10.1116/11.20121108
The Si3N4/TiN Interface: An Introduction to a Series of Ultrathin Films Grown and Analyzed In situ using X-ray Photoelectron Spectroscopy
Richard T Haasch (2012)
10.1103/PhysRevB.28.3214
Vacancy effects in the x-ray photoelectron spectra of Ti N x
L. Porte (1983)
10.1007/s100500070063
Semi-inclusive structure functions in the spectator model
A. Bacchetta (2000)
10.1063/1.1656374
ANALYSIS OF MATERIALS BY ELECTRON-EXCITED AUGER ELECTRONS.
L. Harris (1968)
10.1002/sia.740210302
Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range
S. Tanuma (1991)
10.1021/nn101896a
Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer.
Sakulsuk Unarunotai (2010)
10.1119/1.19072
Thermal Physics, 2nd ed.
C. Kittel (1998)
10.1002/andp.19053220607
Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt
A. Einstein (1905)
10.1002/SIA.1601
Surface segregation of silicon impurities in organic materials
M. Reijme (2004)
10.1116/1.1367599
Epitaxial VN(001) Grown and Analyzed In situ by XPS and UPS. II. Analysis of Ar+ Sputter Etched Layers
R. T. Haasch (2000)
10.1002/andp.18872670827
Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung
H. Hertz (1887)
10.1016/B978-0-12-341830-2.50006-6
The Historical Development of Auger Electron Spectroscopy
Dale F. Stein (1988)
10.1116/11.20121001
The Si3N4/TiN Interface: 1. TiN(001) Grown and Analyzed In situ using Angle-resolved X-ray Photoelectron Spectroscopy
Richard T. Haasch (2012)
10.1051/jphysrad:0192500606020500
Sur l'effet photoélectrique composé
P. Auger (1925)
10.1103/PHYSREVB.63.125119
Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations
D. Gall (2001)
10.1103/PHYSREVB.83.125124
Electronic structure of the SiN x /TiN interface: A model system for superhard nanocomposites
Joerg Patscheider (2011)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar