Online citations, reference lists, and bibliographies.

Phytoremediation Of Heavy Metals Contaminated Soils Through Transgenic Plants

Neerja Srivastava
Published 2016 · Environmental Science

Cite This
Download PDF
Analyze on Scholarcy
Share
The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass, and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoremediation, the use of plants and their associated microbes to remedy contaminated soils, sediments, and groundwater, is emerging as a cost-effective and environment friendly technology. Phytoremediation uses different plant processes and mechanisms normally involved in the accumulation, complexation, volatilization, and degradation of organic and inorganic pollutants. Certain plants, called hyperaccumulators, are good candidates in phytoremediation, particularly for the removal of heavy metals. Phytoremediation efficiency of plants can be substantially improved using genetic engineering technologies. Recent research results, including overexpression of genes whose protein products are involved in metal uptake, transport, and sequestration, or act as enzymes involved in the degradation of hazardous organics, have opened up new possibilities in phytoremediation of heavy metal-contaminated soils.
This paper references
10.1016/j.jhazmat.2008.04.030
Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator.
Yuebing Sun (2009)
10.1104/PP.119.2.471
Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores.
K. Higuchi (1999)
10.5402/2011/402647
Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation
R. A. Wuana (2011)
10.1016/S0160-4120(02)00152-6
Phytoremediation of heavy metal-contaminated land by trees--a review.
I. Pulford (2003)
10.1038/nbt747
Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression
O. P. Dhankher (2002)
Effect of substrate pH on the accumulation of lead in radish [Raphanus sativus L. subvar. radicula] and spinach [Spinacia oleracea L.]
M. Gawęda (1995)
10.1007/s002530100631
The use of transgenic plants in the bioremediation of soils contaminated with trace elements
U. Krämer (2001)
10.1080/713779219
Field Note: Arabis gemmifera is a Hyperaccumulator of Cd and Zn
H. Kubota (2003)
10.1007/BF00020172
Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants
A. Pan (1994)
The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli.
J. Schottel (1978)
10.1016/J.ENVPOL.2007.05.021
Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study.
M. T. Domínguez (2008)
Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients.
Kapil Kumar Tiwari (2009)
10.1016/J.GEXPLO.2011.04.007
Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes
J. Bech (2012)
10.1104/PP.119.3.1047
Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.
B. J. van der Zaal (1999)
10.1016/j.plantsci.2010.08.016
Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
N. Rascio (2011)
10.1016/j.scitotenv.2009.08.017
Developing decision support tools for the selection of "gentle" remediation approaches.
Kene Onwubuya (2009)
10.1007/S00244-003-0162-X
Differential Uptake and Transport of Trivalent and Hexavalent Chromium by Tumbleweed (Salsola kali)
J. Gardea-Torresdey (2005)
10.1016/S0269-7491(99)00111-6
Solubility of lead, zinc and copper added to mineral soils.
C. Martínez (2000)
10.1104/pp.110.156570
Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in Stanleya pinnata1[W][OA]
J. L. Freeman (2010)
10.1016/S0167-7799(00)01534-1
Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals.
M. Mejàre (2001)
10.2136/sssaj1989.03615995005300030019x
Accelerated Rates of Selenium Volatilization From California Soils
U. Karlson (1989)
10.1073/PNAS.93.8.3182
Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.
C. Rugh (1996)
10.1080/00207233.2014.909681
Determination of heavy metal uptake in transgenic plants harbouring the rabbit CYP450 2E1 using X-ray fluorescence analysis
Raghad S. Mouhamad (2014)
10.4148/1090-7025.1015
Phytoestraction of metals from contaminated soil: a review of plant/soil/metal incineration and assessment of pertinent agronomic issues
M. Lasat (1999)
10.1023/A:1004328816645
The potential of Thlaspi caerulescens for phytoremediation of contaminated soils
B. Robinson (2004)
10.1007/BF00029279
Abscisic acid in soils: What is its function and which factors and mechanisms influence its concentration?
W. Hartung (2004)
10.1007/s11104-004-5295-9
Phytoremediation of heavy metal and PAH-contaminated brownfield sites
S. Roy (2004)
10.1023/A:1009669412489
Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene
François Dorlhac de Borne (2004)
10.1104/PP.122.3.657
Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress.
B. Ezaki (2000)
Remediation of Metals-Contaminated Soils and Groundwater
D. Dzombak (1997)
10.1080/0735-260291044313
Phytoremediation of Metals Using Transgenic Plants
E. Pilon-Smits (2002)
10.1002/(SICI)1097-0290(20000305)67:5<607::AID-BIT11>3.0.CO;2-3
Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens.
T. V. Nedelkoska (2000)
10.5860/choice.30-3836
Biogeochemistry of trace metals
D. Adriano (1992)
10.1080/16226510590915837
EFFECT OF THALLIUM FRACTIONS IN THE SOIL AND POLLUTION ORIGINS ON Tl UPTAKE BY HYPERACCUMULATOR PLANTS: A KEY FACTOR FOR THE ASSESSMENT OF PHYTOEXTRACTION
H. Al-Najar (2005)
10.1111/J.1469-8137.2007.02285.X
Selenium hyperaccumulation reduces plant arthropod loads in the field.
Miriam L. Galeas (2008)
10.1007/BF00028889
Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function
K. M. Evans (2004)
10.1080/09593330.2012.696715
Phytoremediation for bioenergy: challenges and opportunities
Helena I. Gomes (2012)
10.1016/J.PHYTOCHEM.2005.08.012
Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator.
Q. Sun (2005)
10.1126/science.193.4253.579
Sebertia acuminata: A Hyperaccumulator of Nickel from New Caledonia
T. JAFFR� (1976)
10.1017/CBO9781316529997.001
The Conservation Foundation
G. Roberts (1957)
10.1007/s001220051295
Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus
E. P. Brewer (1999)
10.1073/PNAS.93.8.3164
Plant genetic engineering may help with environmental cleanup.
I. Raskin (1996)
10.1016/j.chemosphere.2013.01.075
Phytoremediation of heavy metals--concepts and applications.
H. Ali (2013)
10.1111/J.1469-8137.2006.01943.X
Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators.
Miriam L. Galeas (2007)
10.1016/j.chemosphere.2008.12.068
Phytotoxicity and bioavailability of cobalt to plants in a range of soils.
Hua-Fen Li (2009)
10.1016/S0375-6742(97)00036-8
The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining
B. Robinson (1997)
10.1016/S1360-1385(02)02295-1
A long way ahead: understanding and engineering plant metal accumulation.
S. Clemens (2002)
10.1111/j.1469-8137.2009.03051.x
Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).
H. Küpper (2010)
10.1016/S0168-1656(00)00270-4
Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn.
V. P. Grichko (2000)
10.1038/88067
Improving rice yields—ironing out the details
M. L. Guerinot (2001)
10.1104/pp.119.1.73
Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance
Liang Zhu Y (1999)
10.2134/jeq1994.00472425002300040024x
Solubility of cyanide in contaminated soils.
J. Meeussen (1994)
10.1007/BF00299747
Identification of 2n breeding lines and 4n varieties of potato (Solanum tuberosum, ssp. tuberosum) with RFLP-fingerprints
C. Gebhardt (2004)
10.1073/PNAS.210214197
Altered selectivity in an Arabidopsis metal transporter.
E. Rogers (2000)
10.1007/978-94-009-4482-4_7
Mammalian Metallothionein Functions in Plants
Daniel D. Lefebvre (1987)
10.1016/J.ENVEXPBOT.2010.02.001
Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS
A. B. Moradi (2010)
10.1016/0168-9452(91)90223-U
Light inducible and tissue-specific expression of a chimeric mouse metallothionein cDNA gene in tobacco
I. Maiti (1991)
10.1007/S10311-009-0268-0
Field crops for phytoremediation of metal-contaminated land. A review
T. Vamerali (2010)
10.1146/annurev.mi.40.100186.003135
Organization, expression, and evolution of genes for mercury resistance.
A. Summers (1986)
10.1201/9781420061888_ch106
Toxicological Profile for Lead
H. Abadin (2007)
10.1089/EES.2004.21.691
Removal of Nickel and Phenanthrene from Kaolin Soil Using Different Extractants
A. P. Khodadoust (2004)
10.1046/J.1469-8137.2002.00449_1.X
In search of the Holy Grail – a further step in understanding metal hyperaccumulation?
A. Baker (2002)
10.1126/SCIENCE.276.5318.1566
Aluminum tolerance in transgenic plants by alteration of citrate synthesis.
J. M. de la Fuente (1997)
10.1038/3511
Expression and inheritance of multiple transgenes in rice plants
Li-li Chen (1998)
10.1016/S0958-1669(97)80004-3
Phytoremediation of soil metals.
R. Chaney (1997)
Phytoremediation of metal mine waste.
S. Mukhopadhyay (2010)
10.1016/S1369-5266(99)00054-0
Phytoremediation of toxic elemental and organic pollutants.
R. Meagher (2000)
10.1016/J.ENVPOL.2007.07.006
Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil.
I. Brunner (2008)
10.1016/S0048-9697(02)00165-1
Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
W. Zhang (2002)
10.2225/VOL6-ISSUE3-FULLTEXT-6
Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology
M. Prasad (2003)
10.2134/JEQ2000.00472425002900040003X
Selenium Volatilization from a Soil—Plant System for the Remediation of Contaminated Water and Soil in the San Joaquin Valley
Zhi-qing Lin (2000)
10.1016/j.jhazmat.2011.11.008
The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana.
Jiangbo Guo (2012)
10.1046/J.1365-313X.1999.00588.X
A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants.
T. Arazi (1999)
10.1093/emboj/18.12.3325
Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast
S. Clemens (1999)
10.2136/sssaj1995.03615995005900010020x
Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution
S. Brown (1995)
10.2134/jeq1990.00472425001900040023x
Accumulation of Selenium in Plants Grown on Selenium-Treated Soil
G. Banuelos (1990)
10.1038/7029
Iron fortification of rice seed by the soybean ferritin gene
F. Goto (1999)
10.1002/1521-3846(200205)22:1/2<101::AID-ABIO101>3.0.CO;2-N
Accumulation of Cadmium by Transgenic Tobacco
T. Macek (2002)
10.1016/0958-1669(94)90030-2
Bioconcentration of heavy metals by plants
I. Raskin (1994)
10.1073/PNAS.96.12.7098
Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase.
H. Ling (1999)
10.2134/jeq1992.00472425002100020006x
Distribution and Partitioning of Trace Metals in Contaminated Soils near Leadville, Colorado
D. Levy (1992)
10.1111/J.1744-7909.2005.00144.X
Molecular Mechanisms and Genetic Basis of Heavy Metal Tolerance/Hyperaccumulation in Plants
X. Yang (2005)
10.1016/J.ENVPOL.2006.10.035
Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
R. Unterbrunner (2007)
10.1007/s12033-009-9162-z
One Novel Mitochondrial Citrate Synthase from Oryza sativa L. can Enhance Aluminum Tolerance in Transgenic Tobacco
Y. Han (2009)
10.1146/annurev.arplant.47.1.127
THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS.
K. Marrs (1996)
10.2307/3545694
Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore
Robert S. Boyd (1994)
10.1038/17800
A ferric-chelate reductase for iron uptake from soils
N. Robinson (1999)
10.1073/PNAS.96.11.5973
Use of plant roots for phytoremediation and molecular farming.
D. Gleba (1999)
10.1016/J.ENVEXPBOT.2009.02.003
Response of Vicia faba L. to metal toxicity on mine tailing substrate:Geochemical and morphological changes in leaf and root
A. Probst (2009)
10.1007/s11104-004-1494-7
Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin
V. Sappin-Didier (2004)
10.1007/978-1-4757-1907-9
Trace Elements in the Terrestrial Environment
D. Adriano (1986)
10.1038/74531
Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate
J. López-Bucio (2000)
10.1007/s11104-007-9240-6
The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions
R. Boyd (2007)
10.1046/J.1469-8137.2002.00432.X
Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations
V. Bert (2002)
10.1111/J.1469-8137.2007.02253.X
Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis.
D. Fernando (2008)
10.1023/A:1008836812714
Iron accumulation in tobacco plants expressing soyabean ferritin gene
F. Goto (2004)
10.1104/PP.121.3.947
Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants.
M. Takahashi (1999)
10.1046/J.1365-3040.2000.00569.X
Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri
F. Zhao (2000)
10.1111/j.1432-1033.1996.0235u.x
On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus.
B. Neuhierl (1996)
10.1007/S11270-007-9401-5
Phytoremediation Technology: Hyper-accumulation Metals in Plants
P. Padmavathiamma (2007)
10.1111/j.1469-8137.2008.02446.x
Enhancing phytoremediation through the use of transgenics and endophytes.
S. Doty (2008)
10.1038/72678
Phytodetoxification of hazardous organomercurials by genetically engineered plants
S. P. Bizily (2000)
10.1104/pp.109.139717
Complexation and Toxicity of Copper in Higher Plants. I. Characterization of Copper Accumulation, Speciation, and Toxicity in Crassula helmsii as a New Copper Accumulator1[W][OA]
H. Küpper (2009)
10.2134/JEQ2006.0319
Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants.
H-S Helmisaari (2007)
Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils
A. J. Baker (2000)
10.1073/PNAS.97.9.4991
Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes.
S. Thomine (2000)
10.1105/tpc.11.6.1153
Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe
S. B. Ha (1999)
10.1046/J.1432-1327.1999.00717.X
Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants.
A. Herbik (1999)
10.1021/es00007a747
Phytoremediation of organic and nutrient contaminants.
J. Schnoor (1995)
10.1016/S0960-8524(00)00108-5
Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment.
C. Garbisu (2001)
10.1038/35054664
A fern that hyperaccumulates arsenic
L. Ma (2001)
10.1080/15226514.2010.549862
How Phytohormone Iaa and Chelator Edta Affect Lead Uptake by ZN/CD Hyperaccumulator Picris Divaricata
R. Du (2011)
10.1021/es00006a022
Zinc and Cadmium Uptake by Hyperaccumulator Thlaspi caerulescens and Metal Tolerant Silene vulgaris Grown on Sludge-Amended Soils.
S. Brown (1995)
Fixation of cadmium, copper, nickel and zinc in soil : kinetics, mechanisms and its effect on metal bioavailability
Jurgen Buekers (2007)
10.1016/j.tibtech.2007.11.009
Novel roles for genetically modified plants in environmental protection.
T. Macek (2008)
10.1104/pp.62.4.566
Nickel in Plants: II. Distribution and Chemical Form in Soybean Plants.
D. Cataldo (1978)
10.1023/A:1026100707797
Phytoextraction capacity of trees growing on a metal contaminated soil
W. Rosselli (2004)
10.2134/JEQ1997.00472425002600050032X
Phytoextraction of cadmium and zinc from a contaminated soil
S. Ebbs (1997)
Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide.
B. Fox (1982)
10.1073/pnas.171039798
Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense
M. W. Persans (2001)
10.1080/15226510802100630
Heavy Metal Tolerance and Accumulation in Indian Mustard (Brassica Juncea L.) Expressing Bacterial γ-Glutamylcysteine Synthetase or Glutathione Synthetase
S. Reisinger (2008)
10.1201/9781439822654
Phytoremediation of Contaminated Soil and Water
N. Terry (1999)
10.1007/S11368-010-0190-X
Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859
M. Mench (2010)
10.1016/J.ENVEXPBOT.2008.12.016
Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch
Y. Tang (2009)
10.4314/AJB.V8I6.59987
Phytoremediation of heavy metals: Recent techniques
C. D. Jadia (2009)
10.1897/03-540
Chemical speciation and cellular deposition of lead in Sesbania drummondii.
N. Sharma (2004)
10.1006/ANBO.1998.0786
Nickel Hyperaccumulation in the Serpentine Flora of Cuba
R. Reeves (1999)
10.1038/NBT1098-925
Development of transgenic yellow poplar for mercury phytoremediation
C. Rugh (1998)
10.1071/EN06075
Cadmium—A Priority Pollutant
P. C. Campbell (2006)
10.1126/SCIENCE.290.5499.2088
The ecological risks and benefits of genetically engineered plants.
L. L. Wolfenbarger (2000)
10.1046/J.1469-8137.2003.00783.X
Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails
S. Huitson (2003)
10.17221/4067-PSE
The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes
Daniela Pavlíková (2018)
10.1016/S0176-1617(11)82090-0
Selenium volatilization in roots and shoots: Effects of shoot removal and sulfate level
A. Zayed (1994)
10.1023/A:1004222612602
Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1)
I. Hasegawa (2004)
10.1111/J.1469-8137.2006.01783.X
Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study.
D. Fernando (2006)
10.1080/01904168009362747
Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture
A. Wallace (1980)
10.1016/J.BIOCHI.2006.07.003
Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
S. Clemens (2006)
10.1177/000456329903600301
Heavy Metal Poisoning and its Laboratory Investigation
D. Baldwin (1999)
Phytoremediation - Insights into Plants as remedies
Rajeswari Prabha Mahendran (2014)
Lead in the Home Garden and Urban Soil Environment
C. Rosen (2002)
10.1104/PP.121.4.1117
Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy).
M. W. Persans (1999)
Nickel Hyperaccumulation in Bornmuellera kiyakii Aytaç & Aksoy and Associated Plants of the Brassicaceae from Kızıldağ (Derebucak, Konya-Turkey)
R. Reeves (2009)
10.2436/CS.V0I0.310
Phytoremediation : principles and perspectives
C. Poschenrieder (2003)
10.1023/A:1026436806319
Chemical and Biological Parameters as Tools to Evaluate and Improve Heavy Metal Phytoremediation
A. Kamnev (2000)
10.1016/S0269-7491(99)00262-6
Strategies of heavy metal uptake by three plant species growing near a metal smelter.
H. Dahmani-Muller (2000)
10.1007/BF00288793
Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants
S. Misra (1989)
10.1007/s11104-007-9269-6
Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae)
D. Fernando (2007)
10.1016/J.CHEMOSPHERE.2006.11.014
Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
X. Zhang (2007)
10.1007/BF01088283
Effect of cadmium treatment on the expression of chimeric genes in transgenic tobacco seedlings and calli
I. Stefanov (2005)
10.1046/J.1365-313X.2000.00885.X
A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses.
A. Oberschall (2000)
10.1007/s12011-010-8850-7
Effect of Organic Ligands on Accumulation of Copper in Hyperaccumulator and Nonaccumulator Commelina communis
Haiou Wang (2010)
10.1016/J.ENVEXPBOT.2011.04.018
Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC.
Bodin Mongkhonsin (2011)
10.1007/s002530051116
Microbes and metals
H. Ehrlich (1997)
10.1656/045.016.0513
Manganese Hyperaccumulation in Phytolacca americana L. from the Southeastern United States
A. J. Pollard (2009)
10.1104/PP.124.1.125
Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance.
K. Hirschi (2000)
10.1046/J.1365-313X.2000.00901.X
Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance.
R. Sunkar (2000)
10.2113/GSECONGEO.94.1.109
The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France
M. Leblanc (1999)
10.2134/jeq1992.00472425002100030006x
Rates of selenium volatilization among crop species
N. Terry (1992)
10.1111/j.1469-8137.1994.tb04259.x
Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae)
A. J. Baker (1994)
10.1155/2011/939161
A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation
B. V. Tangahu (2011)
10.1016/J.ENVEXPBOT.2006.06.008
Potential of five willow species (Salix spp.) for phytoextraction of heavy metals.
E. Meers (2007)
10.1016/J.SCITOTENV.2006.01.016
Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
Joonki Yoon (2006)
10.1007/BF00009308
The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration
A. R. Marin (1992)
10.1021/ES012543U
Assessing phytoremediation's progress in the United States and Europe.
D. van der Lelie (2001)
10.1111/J.1399-3054.2000.1100405.X
Overexpression of glutathione reductase in Brassica juncea: Effects on cadmium accumulation and tolerance
E. Pilon-Smits (2000)
10.1042/0264-6021:3470749
Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.
C. Curie (2000)
10.1016/S0958-1669(03)00060-0
Phytoextraction of metals and metalloids from contaminated soils.
S. McGrath (2003)
Phytoremediation of toxic metals : using plants to clean up the environment
I. Raskin (2000)
10.1016/S0031-9422(02)00135-8
Increase of free cysteine and citric acid in plant cells exposed to cobalt ions.
M. Oven (2002)
10.1007/s13762-013-0299-8
Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation
D. Mani (2013)
10.1078/0176-1617-00314
Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium
E. Harada (2001)
10.1104/pp.106.094474
Iron Acquisition by Phytosiderophores Contributes to Cadmium Tolerance1[OA]
A. R. Meda (2007)
10.1104/PP.119.1.123
Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance
Pilon-Smits (1999)
10.1016/j.jenvman.2012.04.002
Approaches for enhanced phytoextraction of heavy metals.
A. Bhargava (2012)
10.1016/J.CHEMOSPHERE.2004.09.022
Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils.
K. C. Chandra Sekhar (2005)
10.1016/j.jhazmat.2011.08.075
Cadmium phytoextraction potential of different Alyssum species.
Roberto Barzanti (2011)
10.1111/j.1469-8137.2008.02748.x
Molecular mechanisms of metal hyperaccumulation in plants.
N. Verbruggen (2009)
10.1007/s12229-011-9092-x
A Review on Mechanisms of Plant Tolerance and Role of Transgenic Plants in Environmental Clean-up
C. S. Seth (2011)
10.1007/s10535-007-0134-5
Metal hyperaccumulation and bioremediation
K. Shah (2007)
10.1016/S0167-7799(00)88987-8
Phytoremediation of contaminated soils
S. Cunningham (1995)
10.2134/jeq1993.00472425002200040021x
Boron and Selenium Removal in Boron-Laden Soils by Four Sprinkler Irrigated Plant Species
G. Banuelos (1993)
10.1023/A:1022504826342
Chromium in the environment: factors affecting biological remediation
A. Zayed (2004)
10.2134/JEQ2002.1090
Phytoextraction of toxic metals: a review of biological mechanisms.
M. Lasat (2002)
10.1016/S0269-7491(01)00293-7
The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land.
P. Visoottiviseth (2002)
10.1104/PP.118.1.51
Expression of the yeast FRE genes in transgenic tobacco.
A. I. Samuelsen (1998)
10.1080/10934520902784583
Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites
John Mellem (2009)
10.1104/pp.110.3.715
Promises and Prospects of Phytoremediation
S. Cunningham (1996)
10.1007/s11356-009-0134-4
Effects of Cd and Pb on soil microbial community structure and activities
S. Khan (2010)
10.1021/ES960552A
Enhanced Accumulation of Pb in Indian Mustard by Soil-Applied Chelating Agents
M. Blaylock (1997)
Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene.
M. Suh (1998)
10.1071/SR99128
Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand
M. Mclaughlin (2000)
10.5897/AJB2009.000-9090
Genetic engineering strategies for enhancing phytoremediation of heavy metals
M. Fulekar (2009)
10.1038/77355
Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length
Maria E Eriksson (2000)
Terrestrial Higher Plants Which Hyperaccumulate Metallic Elements, A Review of Their Distribution, E
A. Baker (1989)
Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils
A. Gaur (2004)
10.1038/SJ.EMBOR.7400445
Phytoremediation: Molecular biology, requirements for application, environmental protection, public attention and feasibility
A. D. Peuke (2005)
10.1093/emboj/18.14.3973
Cloning and characterization of a novel Mg2+/H+ exchanger
O. Shaul (1999)
10.1016/j.jhazmat.2009.01.096
Adsorption of Cu2+ and Pb2+ ion on dolomite powder.
E. Pehlivan (2009)
10.1093/JXB/ERG303
Transition metal transporters in plants.
J. Hall (2003)
10.5958/2230-732X.2014.00240.X
Metallothioneins from a Hyperaccumulating PlantProsopis julifloraShow Difference in Heavy Metal Accumulation in Transgenic Tobacco
Usha Balasundaram (2014)
10.1016/J.ENVEXPBOT.2011.05.003
Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance
Kristen R. Hladun (2011)
Basic concepts on heavy metal soil bioremediation
C. Garbisu (2003)
10.1046/J.1469-8137.2002.00363.X
Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species
A. Meharg (2002)
10.1104/PP.125.1.164
Fortified foods and phytoremediation. Two sides of the same coin.
M. L. Guerinot (2001)
10.1016/J.BEJ.2012.11.007
Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana
Masako Kiyono (2013)
10.1007/978-0-387-21510-5
Trace elements in terrestrial environments
D. Adriano (2001)
10.1016/J.ENVPOL.2006.01.005
A comparison of phytoremediation capability of selected plant species for given trace elements.
Z. Fischerová (2006)
10.1007/s00442-006-0635-5
Do metal-rich plants deter herbivores? A field test of the defence hypothesis
N. Noret (2006)
10.1046/j.1365-313X.1994.06030433.x
Synthesis of a bifunctional metallothionein/beta-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels.
T. Elmayan (1994)
10.1073/PNAS.96.12.7110
AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution.
O. Vatamaniuk (1999)
10.5772/24355
Transgenic Plants for Enhanced Phytoremediation – Physiological Studies
P. C. M. Farias (2011)
10.1016/S0958-1669(97)80106-1
Phytoremediation of metals: using plants to remove pollutants from the environment.
Raskin (1997)
10.1016/J.CRTE.2003.12.014
Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia
N. Perrier (2004)
10.2134/JEQ2003.4320
Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings.
Lindsay E Bennett (2003)
10.2134/JEQ2001.1940
Fractionation of arsenic in soil by a continuous-flow sequential extraction method.
J. Shiowatana (2001)
10.1021/ES020675X
Characterization of a lead hyperaccumulator shrub, Sesbania drummondii.
S. Sahi (2002)
10.1002/BIT.21188
Expression of bacterial biphenyl‐chlorobiphenyl dioxygenase genes in tobacco plants
Mahmood Mohammadi (2007)
10.1021/ES971027U
Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants
J. Huang (1998)
10.1073/PNAS.94.15.8243
AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene.
Y. P. Lu (1997)
10.2134/JEQ2004.4960
Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.
K. Weggler (2004)
10.1071/PP01192
Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia.
S. D. Bidwell (2002)
10.1104/PP.126.2.564
The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels.
C. Xiang (2001)
10.1038/88143
Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes
M. Takahashi (2001)
10.1111/j.1469-8137.1993.tb03846.x
The genetics of metal tolerance in vascular plants
M. Macnair (1993)
10.1289/ehp.7827149
Soil and plant factors influencing the accumulation of heavy metals by plants.
D. Cataldo (1978)
10.1055/S-2005-872892
Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations.
N. Bašić (2006)
10.1104/pp.111.3.849
A Metal-Accumulator Mutant of Arabidopsis thaliana
E. Delhaize (1996)
Environmental Inorganic Chemistry: Properties, Processes, and Estimation Methods
I. Bodek (1989)
10.1071/FP05217
Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field.
C. Keller (2006)
10.2134/JEQ2005.0049DUP
Trace element chemistry in residual-treated soil: key concepts and metal bioavailability.
N. Basta (2005)
10.1016/S0006-291X(03)00349-8
A plant genetically modified that accumulates Pb is especially promising for phytoremediation.
C. Gisbert (2003)
10.1016/J.BIOTECHADV.2004.10.001
Prospects of genetic engineering of plants for phytoremediation of toxic metals.
S. Eapen (2005)
10.3832/IFOR0555-004
Heavy metals and woody plants - biotechnologies for phytoremediation
M. Capuana (2011)
10.1080/15226510902717549
Rhizosphere Microbial Densities and Trace Metal Tolerance of the Nickel Hyperaccumulator Alyssum Serpyllifolium Subsp. Lusitanicum
C. Becerra-Castro (2009)
10.1104/PP.121.4.1169
Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase.
Y. L. Zhu (1999)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar