Online citations, reference lists, and bibliographies.

Morphogenesis In C. Albicans

David Kadosh
Published 2017 · Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Many human fungal pathogens possess the ability to grow in a variety of different morphologies and Candida albicans is no exception. In dimorphic fungal pathogens, such as Histoplasma capsulatum and Coccidioides immitis, morphological transitions are critical for virulence (Klein and Tebbets, Curr Opin Microbiol, 10(4):314–319, 2007). However, other pathogens, such as Candida glabrata, rarely alter their morphology and the ability to change shape appears to play little, if any, role in their pathogenicity (Do Carmo-Sousa 1969; Fidel et al., Clin Microbiol Rev 12:80–96, 1999; Csank and Haynes, FEMS Microbiol Lett 189(1):115–120, 2000). The ability of Candida albicans to undergo a reversible morphological transition from yeast to filamentous form represents a fundamental aspect of this pathogen’s biology. This transition is typically correlated with pathogenicity and important for a wide variety of virulence-related processes (Lo et al., Cell 90(5):939–949, 1997; Braun and Johnson, Science 277(5322):105–109, 1997; Braun et al., Genetics 156(1):31–44, 2000; Saville et al., Eukaryot Cell 2(5):1053–1060, 2003; Carlisle et al., Proc Natl Acad Sci USA 106:599–604, 2009; Kumamoto and Vinces, Proc Natl Acad Sci USA 102(15):5576–5581, 2005; Korting et al., J Med Microbiol 52(Pt 8):623–632, 2003; Gow et al., Curr opin microbiol 5(4):366–371, 2002). As a consequence, a significant amount of research, mostly over the past 25 years, has focused on signaling pathways, regulators, and mechanisms that are involved in controlling the C. albicans morphological transition. In this chapter we will first describe the major C. albicans morphologies and the relationship between C. albicans morphology and virulence. Next, we will discuss the mechanics of hyphal growth as well as a variety of signaling pathways, regulators, and mechanisms important for regulating C. albicans morphogenesis in response to host environmental cues. Finally, we will discuss recent insights gained from genome-wide studies of the C. albicans morphological transition as well as the potential that this transition may hold to serve as a target for new therapeutic strategies.
This paper references
10.1091/mbc.E08-03-0272
Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans.
Yunkyoung Song (2008)
10.1371/journal.ppat.1002663
A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans
Y. Lu (2012)
10.1038/sj.emboj.7600594
Dectin‐1 mediates macrophage recognition of Candida albicans yeast but not filaments
Benjamin N. Gantner (2005)
10.1128/MMBR.00028-06
Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond
Hay-Oak Park (2007)
Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans.
N. Gow (1986)
10.1091/MBC.02-05-0076
Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth.
Catherine Bachewich (2003)
10.1128/EC.1.1.95-104.2002
CDC42 Is Required for Polarized Growth in Human Pathogen Candida albicans
S. Ushinsky (2002)
10.1093/emboj/20.17.4753
NRG1, a repressor of filamentous growth in C.albicans, is down‐regulated during filament induction
B. Braun (2001)
10.1128/EC.05060-11
The Quorum-Sensing Molecules Farnesol/Homoserine Lactone and Dodecanol Operate via Distinct Modes of Action in Candida albicans
R. A. Hall (2011)
10.1111/J.1439-0507.2006.01308.X
Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme.
P. Staib (2007)
10.1091/MBC.E05-06-0501
Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.
B. Enjalbert (2006)
10.1038/ng.605
Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
S. Noble (2010)
10.1139/m91-108
Chlamydospore-like cells of Candida albicans in the gastrointestinal tract of infected, immunocompromised mice.
G. Cole (1991)
10.1128/9781555817176.CH8
Cell Cycle and Growth Control in Candida Species
C. Gale (2012)
10.1091/MBC.12.11.3631
Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans.
C. R. Rocha (2001)
10.1042/BST0330291
Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1.
M. M. Maidan (2005)
10.1016/j.chom.2013.10.008
Synergistic regulation of hyphal elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida albicans.
Y. Lu (2013)
10.1038/sj.emboj.7601814
Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth
Xin-De Zheng (2007)
10.1128/CMR.12.1.80
Candida glabrata: Review of Epidemiology, Pathogenesis, and Clinical Disease with Comparison toC. albicans
P. Fidel (1999)
10.1080/07435809209035403
Stimulation of Candida albicans transition by human chorionic gonadotrophin and a bacterial protein.
O. Caticha (1992)
10.1099/JMM.0.05125-0
Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium.
H. C. Korting (2003)
10.1046/J.1365-2958.2001.02672.X
Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans.
E. Leberer (2001)
10.1128/EC.4.1.90-94.2005
The G1 Cyclin Cln3 Regulates Morphogenesis in Candida albicans
Bernardo Chapa y Lazo (2005)
10.1371/journal.pbio.1001830
Discovery of a “White-Gray-Opaque” Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation
L. Tao (2014)
10.1038/ng.2710
Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism
K. Pande (2013)
10.1371/journal.pbio.0050256
Interlocking Transcriptional Feedback Loops Control White-Opaque Switching in Candida albicans
R. Zordan (2007)
10.1371/journal.ppat.1000806
N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans
G. Huang (2010)
10.1126/SCIENCE.283.5407.1535
Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.
J. Staab (1999)
10.1128/JB.181.10.3058-3068.1999
Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans.
R. Alonso-Monge (1999)
10.1007/s002940050359
Candida albicans ALS3 and insights into the nature of the ALS gene family
L. L. Hoyer (1998)
10.1128/JB.183.18.5385-5394.2001
Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.
J. Chandra (2001)
10.1128/MCB.21.7.2496-2505.2001
Rfg1, a Protein Related to the Saccharomyces cerevisiae Hypoxic Regulator Rox1, Controls Filamentous Growth and Virulence in Candida albicans
D. Kadosh (2001)
10.1128/jb.169.1.189-197.1987
"White-opaque transition": a second high-frequency switching system in Candida albicans.
B. Slutsky (1987)
Candida albicans secreted aspartyl proteinases.
B. Hube (1996)
10.1091/MBC.E04-12-1081
The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans.
E. Bensen (2005)
10.1038/ncomms7741
Global analysis of fungal morphology exposes mechanisms of host cell escape
Teresa R. O’Meara (2015)
10.1167/IOVS.06-0793
Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
B. Mitchell (2007)
Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans.
N. Gow (1994)
10.1128/EC.2.3.398-410.2003
Asynchronous Cell Cycle and Asymmetric Vacuolar Inheritance in True Hyphae of Candida albicans
C. Barelle (2003)
10.1091/mbc.E07-11-1110
UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
M. Banerjee (2008)
10.1046/J.1365-2958.2003.03697.X
Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery.
T. Roemer (2003)
10.1128/EC.4.10.1712-1724.2005
Ras1-Induced Hyphal Development in Candida albicans Requires the Formin Bni1
R. Martin (2005)
10.1016/0168-9525(93)90189-O
High-frequency phenotypic switching in Candida albicans.
D. Soll (1993)
10.1128/IAI.72.2.667-677.2004
Release of a Potent Polymorphonuclear Leukocyte Chemoattractant Is Regulated by White-Opaque Switching in Candida albicans
Jeremy Geiger (2004)
10.1073/pnas.93.23.13217
Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.
E. Leberer (1996)
10.1073/pnas.232566499
Metabolic specialization associated with phenotypic switching in Candida albicans
C. Lan (2002)
10.1046/J.1365-2958.2001.02688.X
Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans.
D. P. Bockmühl (2001)
10.1073/pnas.1221734110
Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains
Matthew B. Lohse (2013)
10.1038/sj.emboj.7600195
Hgc1, a novel hypha‐specific G1 cyclin‐related protein regulates Candida albicans hyphal morphogenesis
Xinde Zheng (2004)
10.1128/EC.3.3.741-751.2004
Candida albicans Rim13p, a Protease Required for Rim101p Processing at Acidic and Alkaline pHs
Mingchun Li (2004)
10.1128/IAI.69.7.4536-4544.2001
Traversal of Candida albicans across Human Blood-Brain Barrier In Vitro
A. Jong (2001)
10.1128/EC.00109-10
Spitzenkörper, Exocyst, and Polarisome Components in Candida albicans Hyphae Show Different Patterns of Localization and Have Distinct Dynamic Properties
Laura A. Jones (2010)
10.1091/MBC.E02-05-0272
Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition.
A. Nantel (2002)
10.1007/s00430-010-0147-0
Regulation of white-opaque switching in Candida albicans
J. Morschhäuser (2010)
10.1242/jcs.02414
Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae
H. Crampin (2005)
10.1016/j.cub.2008.06.034
Complementary Adhesin Function in C. albicans Biofilm Formation
C. J. Nobile (2008)
10.1111/J.1365-2958.2005.04576.X
The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
K. Biswas (2005)
10.1091/mbc.E07-12-1272
Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans.
H. Hope (2008)
10.1111/J.1574-6968.2000.TB09216.X
Candida glabrata displays pseudohyphal growth.
C. Csank (2000)
10.1016/J.DEVCEL.2007.06.011
Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development.
Indrajit Sinha (2007)
10.1091/MBC.E06-10-0931
Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans.
F. J. Álvarez (2007)
10.1128/EC.00194-06
Function of Candida albicans Adhesin Hwp1 in Biofilm Formation
C. J. Nobile (2006)
10.1128/MCB.20.3.971-978.2000
RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans
D. Davis (2000)
10.1073/pnas.91.25.12228
Pulsed growth of fungal hyphal tips.
R. López-Franco (1994)
10.1128/IAI.68.10.5953-5959.2000
Candida albicans RIM101 pH Response Pathway Is Required for Host-Pathogen Interactions
D. Davis (2000)
10.1677/joe.0.1300177
Binding sites for LH in Candida albicans: comparison with the mammalian corpus luteum LH receptor.
T. Bramley (1991)
10.1128/EC.00263-10
Orthologues of the Anaphase-Promoting Complex/Cyclosome Coactivators Cdc20p and Cdh1p Are Important for Mitotic Progression and Morphogenesis in Candida albicans †
Hsini Chou (2011)
10.1128/EC.00046-10
Candida albicans Ume6, a Filament-Specific Transcriptional Regulator, Directs Hyphal Growth via a Pathway Involving Hgc1 Cyclin-Related Protein
Patricia L Carlisle (2010)
10.1016/S0092-8674(02)00837-1
White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating
Mathew G. Miller (2002)
10.1038/nrmicro752
The biology of mating in Candida albicans
A. Johnson (2003)
[Candida albicans chlamydospores observed in vivo in a patient with AIDS].
D. Chabasse (1988)
10.1038/nrmicro2636
Growth of Candida albicans hyphae
Peter E. Sudbery (2011)
10.1111/j.1365-2958.2008.06528.x
Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance
Ingrid E Frohner (2009)
10.1128/EC.00111-10
The Transcriptional Regulator Nrg1p Controls Candida albicans Biofilm Formation and Dispersion
Priya Uppuluri (2010)
10.1111/j.1462-5822.2005.00616.x
Contributions of hyphae and hypha‐co‐regulated genes to Candida albicans virulence
C. Kumamoto (2005)
Germ tube growth of Candida albicans.
Gow Na (1997)
10.1111/j.1365-2958.2010.07186.x
The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth.
H. Hope (2010)
10.1007/BF00283424
Homologs of the yeast neck filament associated genes: isolation and sequence analysis of Candida albicans CDC3 and CDC10
BethJ. DiDomenico (2004)
10.1128/EC.3.6.1609-1618.2004
Snf7p, a Component of the ESCRT-III Protein Complex, Is an Upstream Member of the RIM101 Pathway in Candida albicans
Amy L Kullas (2004)
10.1128/EC.00201-06
Candida albicans Rho-Type GTPase-Encoding Genes Required for Polarized Cell Growth and Cell Separation
Alexander Dünkler (2007)
10.1091/MBC.E03-03-0179
Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene.
Mikhail Martchenko (2004)
10.1007/s00294-003-0415-2
Adaptation to environmental pH in Candida albicans and its relation to pathogenesis
D. Davis (2003)
10.1128/JB.181.24.7516-7523.1999
PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans.
A. Porta (1999)
10.1128/EC.2.5.1053-1060.2003
Engineered Control of Cell Morphology In Vivo Reveals Distinct Roles for Yeast and Filamentous Forms of Candida albicans during Infection
S. Saville (2003)
10.1371/journal.pgen.1002058
A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis
Nike Bharucha (2011)
10.1091/MBC.E05-01-0073
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis.
D. Kadosh (2005)
10.1128/EC.2.1.9-18.2003
Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans
M. Bassilana (2003)
The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans.
R. Khalaf (2001)
10.1128/EC.00340-06
Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans
Silvia Argimón (2007)
10.1016/j.cub.2009.03.017
Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling
R. Shapiro (2009)
10.1007/BF00407768
Differences of asymmetrical division between the pseudomycelial and yeast forms of Candida albicans and their effect on multiplication
K. Yokoyama (1983)
10.1099/00221287-135-11-3143
A morphology index for characterization of cell shape in Candida albicans.
L. A. Merson-Davies (1989)
10.1046/J.1365-2958.2001.02459.X
The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization.
P. Sudbery (2001)
10.1128/EC.4.3.588-603.2005
Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth
M. Bassilana (2005)
A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans.
D. P. Bockmühl (2001)
10.1073/PNAS.0407097102
A contact-activated kinase signals Candida albicans invasive growth and biofilm development.
C. Kumamoto (2005)
10.1128/EC.00044-12
The RAM Network in Pathogenic Fungi
S. Saputo (2012)
10.1111/mmi.12576
A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition.
Delma S. Childers (2014)
10.1091/mbc.E12-01-0065
A genome-wide transcriptional analysis of morphology determination in Candida albicans
Patricia L Carlisle (2013)
10.1128/jb.170.2.895-899.1988
Opaque-white phenotype transition: a programmed morphological transition in Candida albicans.
E. H. Rikkerink (1988)
10.1126/science.277.5322.105
Control of filament formation in Candida albicans by the transcriptional repressor TUP1.
B. Braun (1997)
10.1126/science.7992058
Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.
H. Liu (1994)
10.1128/EC.05085-11
Coevolution of Morphology and Virulence in Candida Species
D. S. Thompson (2011)
10.1101/gr.109553.110
Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq.
V. Bruno (2010)
10.1128/EC.4.5.890-899.2005
Relationship of DFG16 to the Rim101p pH Response Pathway in Saccharomyces cerevisiae and Candida albicans
K. J. Barwell (2005)
10.1128/EC.00266-12
White-Opaque Switching of Candida albicans Allows Immune Evasion in an Environment-Dependent Fashion
Christoph Sasse (2012)
10.1111/J.1365-2958.2004.04185.X
The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence.
M. Kelly (2004)
10.1371/journal.ppat.1001193
CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans
R. A. Hall (2010)
10.1128/EC.5.2.321-329.2006
Rac1 and Cdc42 Have Different Roles in Candida albicans Development
M. Bassilana (2006)
10.1128/EC.00155-06
Candida albicans Transcription Factor Ace2 Regulates Metabolism and Is Required for Filamentation in Hypoxic Conditions
Siobhan M Mulhern (2006)
10.1371/journal.pone.0001473
Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes
Matthew B. Lohse (2008)
10.1111/j.1439-0507.1988.tb04416.x
Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis.
O. Kinsman (1988)
10.1002/YEA.1373
Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans.
T. Umeyama (2006)
10.1111/j.1567-1364.2008.00459.x
UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.
Ute Zeidler (2009)
10.1167/iovs.09-4726
The RIM101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis.
X. Yuan (2010)
10.1111/j.1462-5822.2008.01198.x
Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions
C. J. Nobile (2008)
10.1016/j.cub.2009.01.018
CO2 Regulates White-to-Opaque Switching in Candida albicans
G. Huang (2009)
10.1091/mbc.E07-09-0876
Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth.
Alberto González-Novo (2008)
Identification and characterization of TUP1-regulated genes in Candida albicans.
B. Braun (2000)
10.1128/EC.4.1.95-102.2005
Cyclin Cln3p Links G1 Progression to Hyphal and Pseudohyphal Development in Candida albicans
Catherine Bachewich (2005)
10.1128/JB.183.13.4090-4093.2001
Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein.
P. Leng (2001)
10.1091/MBC.E06-05-0411
Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans.
H. Court (2007)
10.1016/J.MIB.2007.04.002
Dimorphism and virulence in fungi.
B. Klein (2007)
10.1128/MCB.01502-08
Hyphal Chain Formation in Candida albicans: Cdc28-Hgc1 Phosphorylation of Efg1 Represses Cell Separation Genes
A. Wang (2009)
10.1111/j.1365-2958.2012.08127.x
BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence.
I. Cleary (2012)
10.1093/emboj/20.17.4742
NRG1 represses yeast–hypha morphogenesis and hypha‐specific gene expression in Candida albicans
A. M. Murad (2001)
10.1128/EC.1.5.787-798.2002
A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicans
E. Bensen (2002)
10.1371/journal.pbio.1001105
Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance
Y. Lu (2011)
10.1091/MBC.E02-01-0013
Septin function in Candida albicans morphogenesis.
Amy J Warenda (2002)
10.1006/emyc.1995.1017
Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model.
S. Bartnicki-García (1995)
10.1080/00362178485380211
A model for the germ tube formation and mycelial growth form of Candida albicans.
N. Gow (1984)
10.1128/MMBR.00045-10
Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease
R. S. Shapiro (2011)
10.1073/pnas.1318690111
Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation
Y. Lu (2014)
10.1016/S0092-8674(00)80358-X
Nonfilamentous C. albicans Mutants Are Avirulent
H. Lo (1997)
10.1038/emboj.2010.158
Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28‐Ccn1/Hgc1 kinase
A. Bishop (2010)
10.1128/iai.64.12.5085-5091.1996
Migration of the fungal pathogen Candida albicans across endothelial monolayers.
S. Zink (1996)
10.1038/npjbiofilms.2015.12
A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance
C. Pierce (2015)
10.1073/pnas.1305982110
Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis
A. Fazly (2013)
10.1016/J.TIM.2004.05.008
The distinct morphogenic states of Candida albicans.
P. Sudbery (2004)
10.1073/pnas.0804061106
Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence
Patricia L Carlisle (2009)
10.1016/S1369-5274(02)00338-7
Fungal morphogenesis and host invasion.
N. Gow (2002)
10.1016/j.mib.2009.09.010
White-opaque switching in Candida albicans.
Matthew B. Lohse (2009)
10.1046/J.1365-2958.1999.01619.X
Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene.
D. Brown (1999)
10.1038/nature17625
Candidalysin is a fungal peptide toxin critical for mucosal infection
D. Moyes (2016)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar