Online citations, reference lists, and bibliographies.

The Role Of CD81 In HCV And Plasmodium Infection

L. Cocquerel, O. Silvie
Published 2013 · Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Hepatitis C and malaria, two of the most prevalent infectious diseases in the world, are caused by Hepatitis C virus (HCV) and Plasmodium parasites, respectively. Both HCV particles and Plasmodium sporozoites, the mosquito-­transmitted stage of the malaria parasite, infect and replicate in the liver. Whereas HCV enters cells by clathrin-mediated endocytosis, Plasmodium sporozoite invasion is a specific active process that relies on the parasite motility machinery. Remarkably, both pathogens critically depend on the host tetraspanin CD81 to enter hepatocytes. In this chapter, we summarize the current knowledge on the role of CD81, tetraspanin-enriched microdomains and CD81-associated partners during HCV and Plasmodium liver infection.
This paper references
10.1186/1741-7015-7-48
Human cellular restriction factors that target HIV-1 replication
K. Strebel (2009)
10.1128/JVI.00024-06
Hepatitis C Virus Entry Depends on Clathrin-Mediated Endocytosis
E. Blanchard (2006)
10.1073/PNAS.0511218103
Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro.
B. Lindenbach (2006)
10.1128/JVI.73.8.6235-6244.1999
Characterization of Hepatitis C Virus E2 Glycoprotein Interaction with a Putative Cellular Receptor, CD81
M. Flint (1999)
10.1097/00041433-200406000-00008
Scavenger receptor BI: A scavenger receptor with a mission to transport high density lipoprotein lipids
M. Connelly (2004)
10.1099/0022-1317-79-10-2367
In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus.
C. Fournier (1998)
10.1042/BC20090125
Role of lipid metabolism in hepatitis C virus assembly and entry
Costin-Ioan Popescu (2009)
10.1128/JVI.72.3.2183-2191.1998
A Retention Signal Necessary and Sufficient for Endoplasmic Reticulum Localization Maps to the Transmembrane Domain of Hepatitis C Virus Glycoprotein E2
L. Cocquerel (1998)
10.1002/hep.23445
Inhibition of hepatitis C virus infection by anti‐claudin‐1 antibodies is mediated by neutralization of E2–CD81–Claudin‐1 associations
Sophie Krieger (2010)
10.1128/JVI.02200-09
Hepatitis C Virus Hypervariable Region 1 Modulates Receptor Interactions, Conceals the CD81 Binding Site, and Protects Conserved Neutralizing Epitopes
D. Bankwitz (2010)
10.1074/jbc.M602116200
EWI-2 and EWI-F Link the Tetraspanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin-Radixin-Moesin Proteins*
Mónica Sala-Valdés (2006)
10.1042/BJ20082422
Lateral organization of membrane proteins: tetraspanins spin their web.
S. Charrin (2009)
10.1073/PNAS.0503596102
Robust hepatitis C virus infection in vitro.
J. Zhong (2005)
10.1128/JVI.76.14.6919-6928.2002
Characterization of Low- and Very-Low-Density Hepatitis C Virus RNA-Containing Particles
P. André (2002)
10.1002/hep.21994
Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81
M. Zeisel (2007)
10.1042/BJ20030343
EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells.
S. Charrin (2003)
10.1111/cmi.12112
EWI‐2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry
Julie Potel (2013)
10.1099/0022-1317-80-11-3007
Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro.
S. Rumin (1999)
10.1258/095646204322637182
The global burden of disease attributable to contaminated injections given in health care settings
A. Hauri (2004)
10.1128/JVI.02199-08
Role of SR-BI in HCV entry: kinetics and molecular determinants
M. T. Catanese (2009)
10.1128/JVI.73.4.2641-2649.1999
The Transmembrane Domain of Hepatitis C Virus Glycoprotein E1 Is a Signal for Static Retention in the Endoplasmic Reticulum
L. Cocquerel (1999)
Flaviviridae :T he Viruses and Their Replication
Brett D. Lindenbach Heinz-J (2007)
10.1038/nbt.1604
Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system
C. T. Jones (2010)
10.1016/J.VIROL.2004.11.034
Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells.
M. Brazzoli (2005)
10.1371/journal.ppat.1000762
The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule
T. Krey (2010)
10.1074/jbc.M109.014647
Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid Composition, and Density of Virus Particles*
S. Haid (2009)
10.1099/VIR.0.82567-0
Mutagenesis of a conserved fusion peptide-like motif and membrane-proximal heptad-repeat region of hepatitis C virus glycoprotein E1.
H. Drummer (2007)
10.1016/J.VIROL.2005.12.027
Cell entry of hepatitis C virus.
B. Bartosch (2006)
10.1002/hep.25501
Role of low‐density lipoprotein receptor in the hepatitis C virus life cycle
Anna Albecka (2012)
10.1053/j.gastro.2010.05.073
Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes.
Isabel Fofana (2010)
10.1099/0022-1317-82-8-1877
Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2.
A. Owsianka (2001)
10.1042/BJ20110868
Distinct roles in folding, CD81 receptor binding and viral entry for conserved histidine residues of hepatitis C virus glycoprotein E1 and E2.
Irene Boo (2012)
10.1016/j.bbamem.2009.08.002
Biophysical characterization of the fusogenic region of HCV envelope glycoprotein E1.
Ana J Pérez-Berná (2009)
10.1128/JVI.00127-07
The Neutralizing Activity of Anti-Hepatitis C Virus Antibodies Is Modulated by Specific Glycans on the E2 Envelope Protein
F. Helle (2007)
10.1006/viro.1994.1515
Complex processing and protein:protein interactions in the E2:NS2 region of HCV.
M. Selby (1994)
10.1074/JBC.M302267200
Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate*
H. Barth (2003)
10.1371/journal.ppat.1000310
Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains
M. Dreux (2009)
10.1371/journal.pone.0001866
The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry
V. Rocha-Perugini (2008)
10.1099/VIR.0.81646-0
Hepatitis C virus entry: potential receptors and their biological functions.
L. Cocquerel (2006)
10.1099/0022-1317-81-12-2873
Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding.
A. H. Patel (2000)
10.1128/JVI.02286-07
CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry
H. J. Harris (2008)
10.1084/jem.20040989
The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion
A. Coppi (2005)
10.1128/JVI.02622-06
Sulfated Homologues of Heparin Inhibit Hepatitis C Virus Entry into Mammalian Cells
A. Basu (2007)
10.1002/JMV.20842
The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles.
K. Morikawa (2007)
10.1016/J.PT.2005.08.002
The Plasmodium sporozoite survives RTS,S vaccination.
G. Snounou (2005)
10.1006/VIRO.2000.0419
Characterization of modified hepatitis C virus E2 proteins expressed on the cell surface.
X. Forns (2000)
10.1016/J.BBRC.2004.12.160
Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2.
H. Drummer (2005)
10.1128/JVI.01573-06
CD81 Expression Is Important for the Permissiveness of Huh7 Cell Clones for Heterogeneous Hepatitis C Virus Infection
D. Akazawa (2007)
10.1016/j.bbalip.2008.01.003
PCSK9: an enigmatic protease.
D. Lopez (2008)
10.1002/(SICI)1096-9071(199903)57:3<223::AID-JMV2>3.0.CO;2-4
Low density lipoprotein receptor as a candidate receptor for hepatitis C virus.
Masyar Monazahian (1999)
10.1128/JVI.77.3.1856-1867.2003
Binding of the Hepatitis C Virus E2 Glycoprotein to CD81 Is Strain Specific and Is Modulated by a Complex Interplay between Hypervariable Regions 1 and 2
R. Roccasecca (2003)
10.1128/JVI.01457-07
Claudin-6 and Claudin-9 Function as Additional Coreceptors for Hepatitis C Virus
Aihua Zheng (2007)
10.1128/JVI.01548-10
Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions
F. Helle (2010)
10.1016/S0042-6822(02)00065-X
Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins.
R. Garry (2003)
10.1146/annurev.micro.091208.073403
Malaria parasite development in the mosquito and infection of the mammalian host.
A. S. Aly (2009)
10.1128/JVI.01443-07
Serum-Derived Hepatitis C Virus Infection of Primary Human Hepatocytes Is Tetraspanin CD81 Dependent
S. Molina (2007)
10.1128/JVI.00914-08
Apolipoprotein C1 Association with Hepatitis C Virus
Jean-Christophe Meunier (2008)
10.1016/0035-9203(82)90289-9
The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes.
T. Ponnudurai (1982)
10.1016/0166-6851(95)02563-4
Cell surface glycosaminoglycans are not obligatory for Plasmodium berghei sporozoite invasion in vitro.
U. Frevert (1996)
10.1038/307367a0
Cultivation of the liver forms of Plasmodium vivax in human hepatocytes
D. Mazier (1984)
10.1128/JVI.02199-08
Role of Scavenger Receptor Class B Type I in Hepatitis C Virus Entry: Kinetics and Molecular Determinants
M. T. Catanese (2009)
10.2353/AJPATH.2007.060789
Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes.
C. Lázaro (2007)
10.1038/nature05654
Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry
M. Evans (2007)
10.1152/PHYSIOL.00015.2005
Protein-protein interactions in the tetraspanin web.
S. Levy (2005)
10.1002/JMV.10196
Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption.
R. Germi (2002)
10.1371/journal.ppat.1000702
RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis
K. Coller (2009)
10.1128/JVI.80.10.4940-4948.2006
Different Domains of CD81 Mediate Distinct Stages of Hepatitis C Virus Pseudoparticle Entry
C. Bertaux (2006)
10.1016/j.pt.2008.08.006
Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma.
J. Baum (2008)
10.1084/jem.20011124
Inhibition of Natural Killer Cells through Engagement of CD81 by the Major Hepatitis C Virus Envelope Protein
S. Crotta (2002)
10.1073/PNAS.0501275102
Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1.
Jean-Christophe Meunier (2005)
10.1099/vir.0.83386-0
Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein
A. Owsianka (2008)
10.1016/j.virol.2009.08.037
Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor.
D. Owen (2009)
10.1074/jbc.M011297200
The Major CD9 and CD81 Molecular Partner
S. Charrin (2001)
10.1128/JVI.02153-09
Mutations within a Conserved Region of the Hepatitis C Virus E2 Glycoprotein That Influence Virus-Receptor Interactions and Sensitivity to Neutralizing Antibodies
S. Dhillon (2010)
10.1053/j.gastro.2011.01.001
A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease.
Michael L Washburn (2011)
10.1128/JVI.78.16.8496-8505.2004
Diverse Hepatitis C Virus Glycoproteins Mediate Viral Infection in a CD81-Dependent Manner
J. McKeating (2004)
10.1128/JVI.02391-09
Novel Function of CD81 in Controlling Hepatitis C Virus Replication
Y. Zhang (2010)
10.1055/S-2005-864785
Hepatitis C virus particles and lipoprotein metabolism.
P. André (2005)
10.1128/JVI.80.5.2418-2428.2006
Association between Hepatitis C Virus and Very-Low-Density Lipoprotein (VLDL)/LDL Analyzed in Iodixanol Density Gradients
Søren U Nielsen (2006)
10.1128/JVI.01888-08
Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection
S. Liu (2008)
10.1073/pnas.0700760104
Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins
H. Huang (2007)
10.1136/gut.2005.076646
Treating viral hepatitis C: efficacy, side effects, and complications
M. Manns (2006)
10.1099/vir.0.021071-0
Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads.
P. Bonnafous (2010)
10.1128/JVI.74.10.4824-4830.2000
Structure-function analysis of hepatitis C virus envelope-CD81 binding.
R. Petracca (2000)
10.1371/journal.pone.0003549
Gene Disruption of Plasmodium falciparum p52 Results in Attenuation of Malaria Liver Stage Development in Cultured Primary Human Hepatocytes
Ben C. L. van Schaijk (2008)
10.1126/science.781840
Human malaria parasites in continuous culture.
W. Trager (1976)
10.1016/j.chom.2008.07.013
Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection.
S. Yalaoui (2008)
10.1086/314986
Conformational epitopes detected by cross-reactive antibodies to envelope 2 glycoprotein of the hepatitis C virus.
I. Nakano (1999)
10.1074/JBC.M107338200
EWI-2 Is a Major CD9 and CD81 Partner and Member of a Novel Ig Protein Subfamily*
C. Stipp (2001)
10.1074/jbc.M509747200
Hepatitis C Virus Glycoproteins Mediate Low pH-dependent Membrane Fusion with Liposomes*
D. Lavillette (2006)
10.1182/BLOOD-2004-05-1952
Uptake and presentation of hepatitis C virus-like particles by human dendritic cells.
H. Barth (2005)
10.1074/jbc.M003003200
The Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins E1 and E2 Play a Major Role in Heterodimerization*
A. Op de beeck (2000)
10.1016/J.JHEP.2006.09.024
The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus.
S. Molina (2007)
10.1084/jem.185.8.1505
Normal Lymphocyte Development but Delayed Humoral Immune Response in CD81-null Mice
H. Maecker (1997)
10.1128/JVI.02642-06
Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus
D. Lavillette (2007)
10.1128/JVI.76.21.11143-11147.2002
Identification of the Hepatitis C Virus E2 Glycoprotein Binding Site on the Large Extracellular Loop of CD81
H. Drummer (2002)
10.1099/0022-1317-80-4-887
Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex.
J. Meunier (1999)
10.1016/J.IJPARA.2006.10.005
Alternative invasion pathways for Plasmodium berghei sporozoites.
O. Silvie (2007)
10.1111/J.1462-5822.2007.00983.X
Erratum: Plasmodium sporozoites trickle out of the injection site (Cellular Microbiology)
L. Yamauchi (2007)
10.1002/hep.22911
PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression
P. Labonté (2009)
10.1074/jbc.273.48.32088
Hepatitis C Virus Glycoprotein Complex Localization in the Endoplasmic Reticulum Involves a Determinant for Retention and Not Retrieval*
S. Duvet (1998)
10.1016/J.BBAMEM.2006.04.024
Membrane-perturbing properties of three peptides corresponding to the ectodomain of hepatitis C virus E2 envelope protein.
B. Pacheco (2006)
10.1073/PNAS.0408442102
Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface.
Ann-Kristin Mueller (2005)
10.1074/jbc.M709824200
Correlation of the Tight Junction-like Distribution of Claudin-1 to the Cellular Tropism of Hepatitis C Virus*
Wei Yang (2008)
10.1016/J.IJPARA.2007.04.005
Cellular interactions of Plasmodium liver stage with its host mammalian cell.
Nazneen Bano (2007)
10.1099/0022-1317-82-9-2243
Mutagenesis of hepatitis C virus E1 protein affects its membrane-permeabilizing activity.
A. Ciccaglione (2001)
10.1016/J.BBAMEM.2007.07.012
Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.
Andrea Hartsock (2008)
10.1074/JBC.M104038200
The Binding of the Circumsporozoite Protein to Cell Surface Heparan Sulfate Proteoglycans Is Required for PlasmodiumSporozoite Attachment to Target Cells*
C. Pinzon-Ortiz (2001)
10.1006/EXPR.2000.4570
Plasmodium yoelii: efficient in vitro invasion and complete development of sporozoites in mouse hepatic cell lines.
M. Mota (2000)
10.1006/METH.1997.0507
Gene targeting in malaria parasites.
R. Menard (1997)
10.1074/jbc.M101726200
High Density Lipoprotein (HDL) Particle Uptake Mediated by Scavenger Receptor Class B Type 1 Results in Selective Sorting of HDL Cholesterol from Protein and Polarized Cholesterol Secretion*
D. Silver (2001)
10.1073/pnas.0915130107
Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures
A. Ploss (2010)
10.1099/0022-1317-78-9-2299
Characterization of truncated forms of hepatitis C virus glycoproteins.
J. Michalak (1997)
10.1084/jem.20021756
Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein Complexes
B. Bartosch (2003)
10.1128/MCB.10.8.4007
TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins.
R. Oren (1990)
10.1006/expr.1994.1098
In vitro development of infectious liver stages of P. yoelii and P. berghei malaria in human cell lines.
J. M. Calvo-Calle (1994)
10.1371/journal.pbio.0030192
Intravital Observation of Plasmodium berghei Sporozoite Infection of the Liver
U. Frevert (2005)
Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies.
M. Hollingdale (1984)
10.1371/journal.pone.0002660
Direct Infection and Replication of Naturally Occurring Hepatitis C Virus Genotypes 1, 2, 3 and 4 in Normal Human Hepatocyte Cultures
M. Buck (2008)
10.1128/JVI.01180-10
Characterization of the Envelope Glycoproteins Associated with Infectious Hepatitis C Virus
G. Vieyres (2010)
10.1128/JVI.00665-08
CD81 Is a Central Regulator of Cellular Events Required for Hepatitis C Virus Infection of Human Hepatocytes
M. Brazzoli (2008)
10.1002/hep.21959
Hepatitis C virus cell‐cell transmission in hepatoma cells in the presence of neutralizing antibodies
J. Timpe (2008)
10.1006/VIRO.2000.0693
The transmembrane domain of the hepatitis C virus E2 glycoprotein is required for correct folding of the E1 glycoprotein and native complex formation.
J. Patel (2001)
10.1034/J.1600-0854.2001.020203.X
The roles of claudin superfamily proteins in paracellular transport.
M. Heiskala (2001)
10.1038/nm1268
Production of infectious hepatitis C virus in tissue culture from a cloned viral genome
T. Wakita (2005)
10.1128/JVI.78.6.2994-3002.2004
Characterization of Functional Hepatitis C Virus Envelope Glycoproteins
A. Op de beeck (2004)
10.1128/JVI.00459-07
Hepatitis C Virus Envelope Glycoprotein E2 Glycans Modulate Entry, CD81 Binding, and Neutralization
Emilia Falkowska (2007)
10.1128/JVI.00038-09
The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection
I. Benedicto (2009)
10.4269/ajtmh.1983.32.682
In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei in a hepatoma cell line.
M. Hollingdale (1983)
10.1529/biophysj.107.126896
Interaction of the most membranotropic region of the HCV E2 envelope glycoprotein with membranes. Biophysical characterization.
A. J. Pérez-Berná (2008)
10.1002/hep.23278
Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles
W. J. Benga (2010)
10.1073/pnas.0832180100
Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles
M. Hsu (2003)
10.1016/j.bbamem.2008.03.018
The pre-transmembrane region of the HCV E1 envelope glycoprotein: interaction with model membranes.
A. J. Pérez-Berná (2008)
10.1074/jbc.M110.104836
Claudin Association with CD81 Defines Hepatitis C Virus Entry
H. J. Harris (2010)
10.1016/0148-9062(95)90126-4
Geophysical Characterization of Sites
R. Woods (1994)
10.1128/JVI.05259-11
Mapping a Region of Hepatitis C Virus E2 That Is Responsible for Escape from Neutralizing Antibodies and a Core CD81-Binding Region That Does Not Tolerate Neutralization Escape Mutations
Z. Keck (2011)
10.1128/JVI.01134-06
Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I
S. Kapadia (2006)
10.1128/JVI.00246-09
Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells
Christopher J. Mee (2009)
10.1111/J.1365-2958.2005.04801.X
Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte.
T. Ishino (2005)
10.1002/hep.21406
Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system
M. Lavie (2006)
10.1074/jbc.M205265200
Expression of the Palmitoylation-deficient CD151 Weakens the Association of α3β1 Integrin with the Tetraspanin-enriched Microdomains and Affects Integrin-dependent Signaling*
F. Berditchevski (2002)
10.1074/jbc.M311331200
A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites*
O. Silvie (2004)
10.1099/0022-1317-80-8-1943
The C-terminal region of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum.
M. Flint (1999)
10.1128/JVI.01894-07
Effect of Cell Polarization on Hepatitis C Virus Entry
Christopher J. Mee (2007)
10.1099/vir.0.006700-0
CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells
J. Witteveldt (2009)
10.1038/nature10168
A genetically humanized mouse model for hepatitis C virus infection
M. Dorner (2011)
10.1038/nprot.2006.53
High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei
C. Janse (2006)
10.1002/eji.1830261117
CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins.
E. Rubinstein (1996)
10.1242/jcs.02911
Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites
O. Silvie (2006)
10.1128/JVI.79.13.8217-8229.2005
An Interplay between Hypervariable Region 1 of the Hepatitis C Virus E2 Glycoprotein, the Scavenger Receptor BI, and High-Density Lipoprotein Promotes both Enhancement of Infection and Protection against Neutralizing Antibodies
B. Bartosch (2005)
10.1016/0042-6822(91)90104-J
Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins.
A. Weiner (1991)
10.1128/JVI.02460-05
Characterization of the Early Steps of Hepatitis C Virus Infection by Using Luciferase Reporter Viruses
G. Koutsoudakis (2006)
10.21775/cimb.009.071
Assembly of a functional HCV glycoprotein heterodimer.
M. Lavie (2007)
10.1128/JVI.00104-06
Diverse CD81 Proteins Support Hepatitis C Virus Infection
M. Flint (2006)
10.1038/nm1350
Quantitative imaging of Plasmodium transmission from mosquito to mammal
R. Amino (2006)
10.1083/JCB.147.5.937
Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites
S. Kappe (1999)
10.1111/j.1462-5822.2007.00972.x
Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection
Ursula Andréo (2007)
10.1016/J.CHOM.2007.10.002
Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells.
A. Coppi (2007)
10.1074/jbc.M705358200
The Exchangeable Apolipoprotein ApoC-I Promotes Membrane Fusion of Hepatitis C Virus*
M. Dreux (2007)
10.1126/science.3880923
Complete development of hepatic stages of Plasmodium falciparum in vitro.
D. Mazier (1985)
10.1128/IAI.00225-07
Plasmodium yoelii Sporozoites with Simultaneous Deletion of P52 and P36 Are Completely Attenuated and Confer Sterile Immunity against Infection
M. Labaied (2007)
10.1371/journal.ppat.1000010
Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain
S. Yalaoui (2008)
10.1128/JVI.77.2.1604-1609.2003
Recognition of Native Hepatitis C Virus E1E2 Heterodimers by a Human Monoclonal Antibody
L. Cocquerel (2003)
10.1002/EJI.200323884
A physical and functional link between cholesterol and tetraspanins.
S. Charrin (2003)
10.1002/hep.22547
Anti‐CD81 antibodies can prevent a hepatitis C virus infection in vivo
P. Meuleman (2008)
10.1002/hep.22673
Development and characterization of hepatitis C virus genotype 1‐7 cell culture systems: Role of CD81 and scavenger receptor class B type I and effect of antiviral drugs
J. Gottwein (2009)
10.1074/jbc.M009859200
FPRP, a Major, Highly Stoichiometric, Highly Specific CD81- and CD9-associated Protein*
C. Stipp (2001)
10.1128/JVI.00193-07
High-Avidity Monoclonal Antibodies against the Human Scavenger Class B Type I Receptor Efficiently Block Hepatitis C Virus Infection in the Presence of High-Density Lipoprotein
M. T. Catanese (2007)
10.1016/J.VIROL.2003.10.008
HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing.
Tiffany Slater-Handshy (2004)
10.1128/JVI.01977-07
The Tight Junction Proteins Claudin-1, -6, and -9 Are Entry Cofactors for Hepatitis C Virus
L. Meertens (2008)
10.1186/1423-0127-16-89
Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry
Hsiao-Fen Li (2009)
10.1186/1471-2180-9-111
The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry
Vera Rocha-Perugini (2008)
10.1529/BIOPHYSJ.105.069666
Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
M. Seigneuret (2006)
10.1016/J.VIROL.2006.05.015
Study of a novel hypervariable region in hepatitis C virus (HCV) E2 envelope glycoprotein.
M. Troesch (2006)
10.1016/j.cell.2005.10.035
Virus-Induced Abl and Fyn Kinase Signals Permit Coxsackievirus Entry through Epithelial Tight Junctions
C. Coyne (2006)
10.1016/J.BBRC.2005.01.056
Kinetics of HCV envelope proteins' interaction with CD81 large extracellular loop.
Hideki Nakajima (2005)
10.1002/hep.21321
Hepatitis C virus entry: Molecular biology and clinical implications
H. Barth (2006)
10.1073/pnas.2335981100
In vitro assay for neutralizing antibody to hepatitis C virus: Evidence for broadly conserved neutralization epitopes
B. Bartosch (2003)
10.4049/jimmunol.167.9.5115
PGRL Is a Major CD81-Associated Protein on Lymphocytes and Distinguishes a New Family of Cell Surface Proteins1
K. Clark (2001)
10.1128/JVI.78.3.1448-1455.2004
CD81 Is Required for Hepatitis C Virus Glycoprotein-Mediated Viral Infection
J. Zhang (2004)
10.1128/JVI.80.4.1734-1741.2006
Time- and Temperature-Dependent Activation of Hepatitis C Virus for Low-pH-Triggered Entry
Donna M. Tscherne (2006)
10.1128/JVI.02356-06
Scavenger Receptor BI and BII Expression Levels Modulate Hepatitis C Virus Infectivity
J. Grove (2007)
10.1128/JVI.01552-09
Hepatoma Cell Density Promotes Claudin-1 and Scavenger Receptor BI Expression and Hepatitis C Virus Internalization
Anne Schwarz (2009)
10.1128/JVI.01717-06
Hepatitis C Virus Entry Requires a Critical Postinternalization Step and Delivery to Early Endosomes via Clathrin-Coated Vesicles
L. Meertens (2006)
10.1128/JVI.00029-06
A Conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr Motif in Hepatitis C Virus Glycoprotein E2 Is a Determinant of CD81 Binding and Viral Entry
H. Drummer (2006)
10.1128/JVI.74.8.3623-3633.2000
Charged Residues in the Transmembrane Domains of Hepatitis C Virus Glycoproteins Play a Major Role in the Processing, Subcellular Localization, and Assembly of These Envelope Proteins
L. Cocquerel (2000)
10.1038/nm808
Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity
O. Silvie (2003)
10.1007/978-3-7091-9312-9_4
Susceptibility of human liver cell cultures to hepatitis C virus infection.
G. Carloni (1993)
10.1161/ATVBAHA.111.241448
Hepatitis C virus: a new class of virus associated with particles derived from very low-density lipoproteins.
J. Ye (2012)
10.1126/SCIENCE.1114016
Complete Replication of Hepatitis C Virus in Cell Culture
B. Lindenbach (2005)
10.1073/PNAS.0500925102
Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.
M. V. van Dijk (2005)
10.1073/PNAS.0402253101
CD81 is an entry coreceptor for hepatitis C virus.
E. Cormier (2004)
10.1006/VIRO.2002.1631
Expression of human CD81 in transgenic mice does not confer susceptibility to hepatitis C virus infection.
F. Masciopinto (2002)
10.1126/SCIENCE.282.5390.938
Binding of hepatitis C virus to CD81.
P. Pileri (1998)
10.1128/JVI.79.24.15331-15341.2005
Basic Residues in Hypervariable Region 1 of Hepatitis C Virus Envelope Glycoprotein E2 Contribute to Virus Entry
Nathalie Callens (2005)
10.1128/JVI.01534-06
The Level of CD81 Cell Surface Expression Is a Key Determinant for Productive Entry of Hepatitis C Virus into Host Cells
G. Koutsoudakis (2006)
10.1111/j.1462-5822.2006.00861.x
Plasmodium sporozoites trickle out of the injection site
L. Yamauchi (2007)
10.1021/BI0523963
The membrane-active regions of the hepatitis C virus E1 and E2 envelope glycoproteins.
A. J. Pérez-Berná (2006)
10.1016/j.ijpara.2008.10.007
Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility.
J. M. Santos (2009)
10.1053/j.gastro.2010.06.058
Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes.
P. Podevin (2010)
10.1128/JVI.74.8.3642-3649.2000
Identification of Amino Acid Residues in CD81 Critical for Interaction with Hepatitis C Virus Envelope Glycoprotein E2
A. Higginbottom (2000)
10.1128/JVI.79.13.8400-8409.2005
Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Glycoproteins
A. Goffard (2005)
10.1111/j.1462-5822.2006.00697.x
Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species
O. Silvie (2006)
10.1126/SCIENCE.291.5501.141
Migration of Plasmodium sporozoites through cells before infection.
M. Mota (2001)
10.1128/IAI.68.6.3667-3673.2000
Antibodies against Thrombospondin-Related Anonymous Protein Do Not Inhibit Plasmodium Sporozoite Infectivity In Vivo
S. Gantt (2000)
10.1128/JVI.73.8.6782-6790.1999
Functional Analysis of Cell Surface-Expressed Hepatitis C Virus E2 Glycoprotein
M. Flint (1999)
10.1111/j.1462-5822.2007.01070.x
Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry
C. Voisset (2008)
10.1093/emboj/20.14.3840
Synthesis of a novel hepatitis C virus protein by ribosomal frameshift
Z. Xu (2001)
10.1016/j.chom.2008.07.012
Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection.
Cristina D. Rodrigues (2008)
10.1099/0022-1317-82-7-1629
Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2.
L. Cocquerel (2001)
10.1128/JVI.00271-06
Identification of Conserved Residues in the E2 Envelope Glycoprotein of the Hepatitis C Virus That Are Critical for CD81 Binding
A. Owsianka (2006)
10.1128/IAI.00661-09
Tetraspanin CD81 Is Required for Listeria monocytogenes Invasion
T. N. Tham (2009)
10.1084/jem.177.5.1287
Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes
U. Frevert (1993)
10.1016/S0923-2516(06)80040-3
Replication and multiplication of hepatitis C virus genome in human foetal liver cells.
S. Iacovacci (1993)
10.1073/PNAS.230453597
Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees.
X. Forns (2000)
10.1016/J.BBAMCR.2005.09.001
Ceramide-enriched membrane domains.
C. Bollinger (2005)
10.1016/S0014-5793(03)00635-5
Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins
H. Drummer (2003)
10.1093/emboj/cdf529
The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus
E. Scarselli (2002)
10.1096/fj.05-4728fje
The interaction of natural hepatitis C virus with human scavenger receptor SR‐BI/Cla1 is mediated by ApoB‐containing lipoproteins
P. Maillard (2006)
10.1038/nature07684
Human occludin is a hepatitis C virus entry factor required for infection of mouse cells
A. Ploss (2009)
10.1128/jvi.70.2.778-786.1996
Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin.
J. Dubuisson (1996)
10.1074/jbc.M111.263350
Hepatitis C Virus Is Primed by CD81 Protein for Low pH-dependent Fusion*
N. R. Sharma (2011)
10.1002/1097-0134(20000815)40:3<355::AID-PROT20>3.0.CO;2-K
A model for the hepatitis C virus envelope glycoprotein E2.
A. Yagnik (2000)
10.1002/1521-4141(200101)31:1<166::AID-IMMU166>3.0.CO;2-L
Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells.
Andreas Wack (2001)
10.1038/nri1548
The tetraspanin web modulates immune-signalling complexes
S. Levy (2005)
10.1074/jbc.M111.220103
Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection*
C. Montpellier (2011)
10.1002/JMV.10404
Characterisation of the differences between hepatitis C virus genotype 3 and 1 glycoproteins.
M. L. Shaw (2003)
10.1074/JBC.M305289200
Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor*
B. Bartosch (2003)
10.1002/EJI.200535527
Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells.
S. Crotta (2006)
10.1073/PNAS.96.22.12766
Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor.
V. Agnello (1999)
10.1093/emboj/20.1.12
CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs
K. Kitadokoro (2001)
10.1002/hep.21139
Oxidized low‐density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells
T. von Hahn (2006)
10.1111/j.1365-2893.2009.01111.x
Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles.
Rodney S Russell (2009)
10.1128/JVI.74.13.5933-5938.2000
Binding of Hepatitis C Virus E2 Glycoprotein to CD81 Does Not Correlate with Species Permissiveness to Infection
A. Meola (2000)
10.1006/VIRO.2000.0617
Hepatitis C virus envelope protein E2 binds to CD81 of tamarins.
T. Allander (2000)
10.1128/JVI.02053-07
Cellular Determinants of Hepatitis C Virus Assembly, Maturation, Degradation, and Secretion
P. Gastaminza (2007)
10.1074/JBC.M411600200
High Density Lipoproteins Facilitate Hepatitis C Virus Entry through the Scavenger Receptor Class B Type I*
C. Voisset (2005)
10.1099/VIR.0.81140-0
Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer.
Y. Ciczora (2005)
10.1128/JVI.01091-07
Human Apolipoprotein E Is Required for Infectivity and Production of Hepatitis C Virus in Cell Culture
Kyung-Soo Chang (2007)
10.1128/JVI.02627-06
Human Serum Amyloid A Protein Inhibits Hepatitis C Virus Entry into Cells
Zhaohui Cai (2007)
10.1186/1743-422X-5-46
Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: Putative CD81 binding region 1 is not involved in CD81 binding
Katharina B Rothwangl (2007)
10.1128/JVI.77.19.10677-10683.2003
CD81-Dependent Binding of Hepatitis C Virus E1E2 Heterodimers
L. Cocquerel (2003)
10.1128/JVI.01476-09
Apolipoprotein E but Not B Is Required for the Formation of Infectious Hepatitis C Virus Particles
J. Jiang (2009)
10.1074/jbc.M109.057927
The Ig Domain Protein CD9P-1 Down-regulates CD81 Ability to Support Plasmodium yoelii Infection*
S. Charrin (2009)
10.1093/emboj/cdf295
Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins
L. Cocquerel (2002)
10.1002/hep.20542
Characterization of host‐range and cell entry properties of the major genotypes and subtypes of hepatitis C virus
D. Lavillette (2005)



Semantic Scholar Logo Some data provided by SemanticScholar