Online citations, reference lists, and bibliographies.

Rough Set Theory

M. Raza, U. Qamar
Published 2017 · Computer Science

Cite This
Download PDF
Analyze on Scholarcy
Share
This chapter discusses the basic preliminaries of rough set theory (RST). Since its inception, RST has been a prominent tool for data analysis due to its analysis friendly nature. RST provides a range of data structures, e.g. information systems, decision systems and approximations, to represent the real-world data. Furthermore, it provides various methods to help analyse this data. This chapter discusses the basic concepts of RST with example to set a strong foundation of RST to be used as feature selection.
This paper references
10.1007/978-3-7908-1883-3_13
Rough Sets in Economic Applications
A. Mrózek (1998)
10.3109/14639238809010096
Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis.
K. Slowinski (1988)
Rough-Fuzzy Hybridization: A New Trend in Decision Making
S. Pal (1999)
Modelling Customer Retention with Statistical Techniques, Rough Data Models and Genetic Programming
E. Eiben (1999)
10.1007/s11042-013-1723-2
Medical image segmentation using rough set and local polynomial regression
C. Xie (2013)
10.1007/3-540-69115-4_66
Discretization of Continuous Attributes on Decision System in Mitochondrial Encephalomyopathies
A. Wakulicz-Deja (1998)
10.1007/978-3-7908-1883-3_14
Multistage Rough Set Analysis of Therapeutic Experience with Acute Pancreatitis
K. Slowinski (1998)
10.1007/978-1-4471-3238-7_12
A Rough Set Model for Relational Databases
T. Beaubouef (1993)
10.1007/BF02168763
Global temperature stability by rule induction: An interdisciplinary bridge
J. Gunn (1994)
10.1109/FUZZY.1998.687568
Soft set approach to the subjective assessment of sound quality
B. Kostek (1998)
10.1016/j.dss.2015.05.002
Algorithm for the detection of outliers based on the theory of rough sets
F. Pérez (2015)
10.1007/978-3-7908-1883-3_10
Extraction Method Based on Rough Set Theory of Rule-Type Knowledge from Diagnostic Cases of Slope-Failure Danger Levels
H. Furuta (1998)
10.1007/3-540-63223-9_104
Rough Set Theory and Rule Induction Techniques for Discovery of Attribute Dependencies in Medical Information Systems
J. Stefanowski (1997)
10.1080/10798587.1996.10750667
Cooperative Knowledge-Based Systems
Z. Ras (1996)
Modelling cardiac patient set residuals using rough sets
Aleksander Øhrn (1997)
10.1007/978-3-7908-1883-3_18
A New Halftoning Method Based on Error Diffusion with Rough Set Filtering
Huanglin Zeng (1998)
10.1016/S1386-5056(97)00061-0
Diagnose progressive encephalopathy applying the rough set theory.
A. Wakulicz-Deja (1997)
10.1007/978-1-4615-5495-0_8
A New Rough Set Approach to Evaluation of Bankruptcy Risk
S. Greco (1998)
10.1007/3-540-64383-4_16
Rough-Set Inspired Approach to Knowledge Discovery in Business Databases
W. Kowalczyk (1998)
10.1007/978-3-642-54756-0_6
Rough Sets in Economy and Finance
Mariusz Podsiadlo (2014)
10.1007/3-540-69115-4_86
Rough Sets and Bayesian Methods Applied to Cancer Detection
R. Swiniarski (1998)
10.1016/S0020-7373(86)80001-3
Rough Classification of Patients After Highly Selective Vagotomy for Duodenal Ulcer
Z. Pawlak (1986)
10.1007/978-94-015-7975-9_7
Surgical Wound Infection - Conducive Factors and Their Mutual Dependencies
M. Kandulski (1992)
10.1111/J.1752-1688.1992.TB03151.X
Multicriteria programming of water supply systems for rural areas
B. Roy (1992)
10.1007/978-3-7908-1883-3_8
Soft Processing of Audio Signals
A. Czyzewski (1998)
Automated Discovery of Functional Components of Proteins from Amino-Acid Sequences Based on Rough Sets and Change of Representation
S. Tsumoto (1995)
Rough sets and concurrency
Andrzej Skowron (1993)
An application of DATALOGIC/R knowledge discovery tool to identify strong predictive rules in stock market data
W. Ziarko (1993)
10.1007/3-540-61286-6_168
The Application of Rough Sets-Based Data Mining Technique to Differential Diagnosis of Meningoenchepahlitis
S. Tsumoto (1996)
10.1109/CIFER.1995.495230
A methodology for stock market analysis utilizing rough set theory
R. Golan (1995)
10.1007/978-94-015-7975-9_12
Use of "Rough Sets" Method to Draw Premonitory Factors for Earthquakes by Emphasing Gas Geochemistry: The Case of a Low Seismic Activity Context, in Belgium
J. Teghem (1992)
10.1007/978-1-4471-3238-7_49
Rough Sets Approach to Analysis of Data of Diagnostic Peritoneal Lavage Applied for Multiple Injuries Patients
K. Slowinski (1993)
10.1111/j.1467-8640.1995.tb00040.x
PRIMEROSE: PROBABILISTIC RULE INDUCTION METHOD BASED ON ROUGH SETS AND RESAMPLING METHODS
S. Tsumoto (1995)
Rough sets approach to the analysis of the structure-activity relationship of quaternary imidazolium compounds.
J. Krysinski (1990)
10.1007/3-540-69115-4_83
Purchase Prediction in Database Marketing with the ProbRough System
D. Poel (1998)
10.1007/978-3-7908-1883-3_15
Reduction Methods for Medical Data
H. Tanaka (1998)
Parametric Representation of Musical Phrases
B. Kostek (1996)
10.1007/978-3-7908-1883-3_17
Rough Sets for Database Marketing
D. Poel (1998)
10.1007/978-3-7908-1883-3_2
Rough Approximation of a Preference Relation in a Pairwise Comparison Table
S. Greco (1998)
10.1016/j.asoc.2015.05.059
Detection of phishing attacks in Iranian e-banking using a fuzzy-rough hybrid system
G. A. Montazer (2015)
10.1007/3-540-69115-4_61
Wavelets, Rough Sets and Artificial Neural Networks in EEG Analysis
Piotr Wojdyllo (1998)
10.1007/978-3-7908-1888-8_2
Synthesis of Decision Rules for Object Classification
Jan G. Bazan (1998)
10.1016/0306-4573(89)90064-2
Intelligent information retrieval using rough set approximations
P. Srinivasan (1989)
Mining Knowledge in Noisy Audio Data
A. Czyzewski (1996)
The application of rough sets theory to the verification of indications for treatment of duodenal ulcer by HSV
J. Fibak (1987)
Rough Sets: Theoretical Aspects of Reasoning about Data
Z. Pawlak (1991)
10.1007/978-94-017-0767-1_21
Rough-Set Sorting of Firms According to Bankruptcy Risk
R. Slowinski (1994)
Rough sets based decision algorithm for treatment of duodenal ulcer by HSV
Z. Pawlak (1987)
10.1007/978-1-4471-3238-7_48
Rough Classification of Pneumonia Patients Using a Clinical Database
G. Paterson (1993)
10.1016/S0020-0255(97)00072-8
Speaker-Independent Recognition of Isolated Words Using Rough Sets
A. Czyzewski (1998)
10.1007/3-540-63223-9_116
Knowledge Discovery from Software Engineering Data: Rough Set Analysis and Its Interaction with Goal-Oriented Measurement
G. Ruhe (1997)
10.1007/978-94-015-7975-9_11
An Application of Rough Set Theory in the Control of Water Conditions on a Polder
A. Reinhard (1992)
10.1002/J.1099-1174.1995.TB00078.X
Application of the Rough Set Approach to Evaluation of Bankruptcy Risk
R. Slowinski (1995)
10.1007/978-94-015-7975-9_6
Rough Classification of HSV Patients
K. Slowinski (1992)
10.1007/s00500-014-1581-5
Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms
V. Prasad (2016)
10.1007/978-1-4471-3238-7_50
Neural Networks and Rough Sets - Comparison and Combination for Classification of Histological Pictures
J. Jelonek (1993)
10.1109/ASPAA.1995.482976
Some methods for detection and interpolation of impulsive distortions in old audio recordings
A. Czyzewski (1995)
10.1007/978-3-7908-1883-3_11
Soft Computing-Based Recognition of Musical Sounds
B. Kostek (1998)
New Methods of Intelligent Filtration and Coding of Audio
A. Czyzewski (1997)



Semantic Scholar Logo Some data provided by SemanticScholar