Online citations, reference lists, and bibliographies.

Advancement Of Genetic Engineering In Rhamnolipid(s) Production

R. Kumar, Amar Jyoti Das
Published 2018 · Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Genetic engineering is manipulation of selected organism’s genome by employing biotechnological tools. Pseudomonas aeruginosa are regarded as an efficient producer of rhamnolipid biosurfactant but due to their pathogenic nature much attention has been paid for rhamnolipid production from non-pathogenic strain. On this contrary, genentic engineering technology is widely explored for the large scale production of rhamnolipid biosurfactant. Hence, the present chapter ventures into molecular aspects of rhamnolipid production by microorganisms and possible role of genetic engineering in rhamnolipid production.
This paper references
10.1099/MIC.0.27357-0
The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation.
T. H. Pham (2004)
10.1128/jb.176.7.2044-2054.1994
Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.
U. Ochsner (1994)
10.1016/J.BCAB.2013.09.009
Rhamnolipid and poly(hydroxyalkanoate) biosynthesis in 3-hydroxyacyl-ACP:CoA transacylase (phaG)-knockouts of Pseudomonas chlororaphis
Daniel K. Y. Solaiman (2014)
10.1128/JB.00080-08
RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.
K. Zhu (2008)
10.4172/2327-5073.1000156
Quorum Sensing in Bacteria and a Glance on Pseudomonas aeruginosa
Maryam Mousavinezhad Moghaddam (2014)
10.1016/0040-1625(94)90042-6
Bi-logistic growth
P. Meyer (1994)
10.1007/s00253-010-2589-0
Microbial biosurfactants production, applications and future potential
I. Banat (2010)
10.1128/JB.185.7.2066-2079.2003
Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis.
M. Schuster (2003)
10.1007/s00253-006-0468-5
Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host
N. Cabrera-Valladares (2006)
10.1186/1475-2859-10-80
Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440
Andreas Wittgens (2011)
10.1016/J.BIORTECH.2007.05.035
Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
M. Cha (2008)
10.1002/BIT.21462
Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery
Q. Wang (2007)
10.1111/lam.12269
Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.
F. Zhao (2014)
10.1016/J.FSHW.2016.04.002
Genetically modified foods: A critical review of their promise and problems
C. Zhang (2016)
10.1007/s10529-012-0956-x
Biosurfactants: a sustainable replacement for chemical surfactants?
R. Marchant (2012)
10.1007/s00253-014-6350-y
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation
B. Stark (2014)
10.1099/MIC.0.26154-0
rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
Eric Déziel (2003)
10.1099/00221287-146-11-2803
Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa.
R. Rahim (2000)
10.1111/j.1574-6968.2010.02017.x
Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa.
Frank Rosenau (2010)
10.1111/J.1574-6968.1999.TB08712.X
The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis.
C. Olvera (1999)
10.1007/978-3-642-14490-5_2
Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production
A. Abdelmawgoud (2011)
10.1074/jbc.M601687200
Structure of RhlG, an Essential β-Ketoacyl Reductase in the Rhamnolipid Biosynthetic Pathway of Pseudomonas aeruginosa*
D. J. Miller (2006)
10.1111/J.1365-2958.2005.04743.X
Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms.
B. Boles (2005)
10.1371/journal.pone.0013557
Multiple FadD Acyl-CoA Synthetases Contribute to Differential Fatty Acid Degradation and Virulence in Pseudomonas aeruginosa
Y. Kang (2010)
10.1128/jb.176.22.6915-6920.1994
The identification of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis.
B. Robertson (1994)
10.1128/JB.00023-07
The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation.
S. Wilhelm (2007)
10.1016/j.nbt.2015.09.005
Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting.
Leticia Dobler (2016)
10.1128/aem.61.9.3503-3506.1995
Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts.
U. Ochsner (1995)
THE NUCLEOTIDE SPECIFICITY AND FEEDBACK CONTROL OF THYMIDINE DIPHOSPHATE D-GLUCOSE PYROPHOSPHORYLASE.
A. Melo (1965)
10.1021/bp050239p
Rhamnolipid Surfactants: An Update on the General Aspects of These Remarkable Biomolecules
M. Nitschke (2005)
10.1371/journal.ppat.1000354
Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix
L. Ma (2009)
10.1016/j.jbiotec.2012.05.022
Rhamnolipids--next generation surfactants?
M. M. Müller (2012)
10.1016/j.chembiol.2013.11.010
A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants.
A. M. Abdel-Mawgoud (2014)
10.1080/02726358708904533
DELIVERY OF SUBSTANCES INTO CELLS AND TISSUES USING A PARTICLE BOMBARDMENT PROCESS
J. Sanford (1987)
The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa
H. Kahraman (2013)
10.1016/J.BEJ.2010.10.011
Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids
K. Hori (2011)



Semantic Scholar Logo Some data provided by SemanticScholar