Online citations, reference lists, and bibliographies.
← Back to Search

The Singly Truncated Normal Distribution: A Non-steep Exponential Family

J. Castillo
Published 1994 · Mathematics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper is concerned with the maximum likelihood estimation problem for the singly truncated normal family of distributions. Necessary and suficient conditions, in terms of the coefficient of variation, are provided in order to obtain a solution to the likelihood equations. Furthermore, the maximum likelihood estimator is obtained as a limit case when the likelihood equation has no solution.
This paper references



This paper is referenced by
Modèles bayésiens hiérarchiques pour le traitement multi-capteur
N. Dobigeon (2007)
Docteur de l'Institut National Polytechnique de Toulouse
École Doctorale (2007)
10.1007/978-3-642-22241-2_15
Algebraic Solutions of Systems of Equations
E. Grafarend (2012)
On the tails of assets returns ∗
J. Castillo ()
10.1023/A:1003158828665
Testing Departures from Gamma, Rayleigh and Truncated Normal Distributions
J. Del Castillo (1997)
10.1007/978-3-642-22241-2_1
The First Problem of Algebraic Regression
E. Grafarend (2012)
10.1007/978-981-13-6241-5_2
Parametric Estimation Under Exponential Family
A. Dörre (2019)
10.1007/S00362-015-0730-Y
Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation
T. Emura (2017)
10.1108/WJE-02-2017-0041
Standard tables of truncated standard normal distribution using a new summarizing method
M. Hamasha (2018)
10.2139/ssrn.1031102
Nested Stochastic Possibility Frontiers with Heterogeneous Capital Inputs
G. Erber (2007)
10.1111/J.1467-9469.2004.00411.X
Efficiency of a Linear Combination of the Median and the Sample Mean: The Double Truncated Normal Distribution
G. Damilano (2004)
10.1023/A:1003585714207
Weighted Poisson Distributions for Overdispersion and Underdispersion Situations
J. Del Castillo (1998)
10.1080/07350015.2015.1038545
Maximum-Entropy Prior Uncertainty and Correlation of Statistical Economic Data
João D. F. Rodrigues (2016)
10.1007/978-3-642-22241-2_9
The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and Inhomogeneous Equations: \{\mathbf{By} = \mathbf{Bi}\ \mathbf{versus} -\mathbf{c} + \mathbf{By} = \mathbf{Bi}\}
E. Grafarend (2012)
A note on the quasiconvex Jensen divergences and the quasiconvex Bregman divergences derived thereof
F. Nielsen (2019)
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family
F. Nielsen (2020)
10.1016/J.JSPI.2009.04.010
The mixture of left–right truncated normal distributions
J. Castillo (2009)
10.1016/J.SPL.2008.10.021
Estimation of the generalized Pareto distribution
J. Castillo (2009)
10.1007/978-3-030-42196-0_2
Modelling Earthquakes: Characterizing Magnitudes and Inter-Arrival Times
C. Ley (2020)
10.1007/978-3-642-22241-2_8
The Fourth Problem of Probabilistic Regression
E. Grafarend (2012)
10.1007/978-3-642-22241-2_12
The Nonlinear Problem of the 3d Datum Transformation and the Procrustes Algorithm
E. Grafarend (2012)
10.1007/978-3-642-22241-2_6
The Third Problem of Probabilistic Regression
E. Grafarend (2012)
On the development of an unsupervised probabilistic algorithm for grayscale fluorescence image segmentation
Magnus Brander (2018)
10.1007/S00180-015-0564-Z
Maximum likelihood estimation for a special exponential family under random double-truncation
Ya-Hsuan Hu (2015)
On power chi expansions of f-divergences
F. Nielsen (2019)
10.1016/j.physa.2010.09.033
Sales distribution of consumer electronics
Ryohei Hisano (2011)
10.1007/978-3-642-22241-2_3
The Second Problem of Algebraic Regression
E. Grafarend (2012)
10.1002/bit.22635
Quantification of non‐specific binding of magnetic micro‐ and nanoparticles using cell tracking velocimetry: Implication for magnetic cell separation and detection
J. Chalmers (2010)
10.1007/978-3-642-22241-2_14
Special Problems of Algebraic Regression and Stochastic Estimation
E. Grafarend (2012)
10.1007/978-3-642-22241-2_13
The Sixth Problem of Generalized Algebraic Regression
E. Grafarend (2012)
10.1080/01621459.1999.10474147
The Best Test of Exponentiality against Singly Truncated Normal Alternatives
J. Castillo (1999)
10.3390/e21050485
On a generalization of the Jensen-Shannon divergence and the JS-symmetrization of distances relying on abstract means
F. Nielsen (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar