← Back to Search

DOI: 10.1007/BF00773592

# The Singly Truncated Normal Distribution: A Non-steep Exponential Family

J. Castillo

Published 1994 · Mathematics

This paper is concerned with the maximum likelihood estimation problem for the singly truncated normal family of distributions. Necessary and suficient conditions, in terms of the coefficient of variation, are provided in order to obtain a solution to the likelihood equations. Furthermore, the maximum likelihood estimator is obtained as a limit case when the likelihood equation has no solution.

This paper references

10.1214/AOMS/1177729751

Estimating the Mean and Variance of Normal Populations from Singly Truncated and Doubly Truncated Samples

A. Cohen (1950)

10.1002/9781118857281

Information And Exponential Families

O. Barndorff-Nielsen (1970)

10.1201/b16946

Truncated and Censored Samples

A. C. Cohen (1991)

10.2307/1402970

Statistical Theory of Reliability and Life Testing: Probability Models

R. Barlow (1976)

10.1214/AOS/1176347491

Natural Real Exponential Families with Cubic Variance Functions

G. Letac (1990)

10.1080/00401706.1961.10489973

Tables for Maximum Likelihood Estimates: Singly Truncated and Singly Censored Samples

A. Cohen (1961)

10.1214/AOS/1176344130

THE GEOMETRY OF EXPONENTIAL FAMILIES

B. Efron (1978)

This paper is referenced by

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

N. Dobigeon (2007)

Docteur de l'Institut National Polytechnique de Toulouse

École Doctorale (2007)

10.1007/978-3-642-22241-2_15

Algebraic Solutions of Systems of Equations

E. Grafarend (2012)

On the tails of assets returns ∗

J. Castillo ()

10.1023/A:1003158828665

Testing Departures from Gamma, Rayleigh and Truncated Normal Distributions

J. Del Castillo (1997)

10.1007/978-3-642-22241-2_1

The First Problem of Algebraic Regression

E. Grafarend (2012)

10.1007/978-981-13-6241-5_2

Parametric Estimation Under Exponential Family

A. Dörre (2019)

10.1007/S00362-015-0730-Y

Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation

T. Emura (2017)

10.1108/WJE-02-2017-0041

Standard tables of truncated standard normal distribution using a new summarizing method

M. Hamasha (2018)

10.2139/ssrn.1031102

Nested Stochastic Possibility Frontiers with Heterogeneous Capital Inputs

G. Erber (2007)

10.1111/J.1467-9469.2004.00411.X

Efficiency of a Linear Combination of the Median and the Sample Mean: The Double Truncated Normal Distribution

G. Damilano (2004)

10.1023/A:1003585714207

Weighted Poisson Distributions for Overdispersion and Underdispersion Situations

J. Del Castillo (1998)

10.1080/07350015.2015.1038545

Maximum-Entropy Prior Uncertainty and Correlation of Statistical Economic Data

JoÃ£o D. F. Rodrigues (2016)

10.1007/978-3-642-22241-2_9

The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and Inhomogeneous Equations: \{\mathbf{By} = \mathbf{Bi}\ \mathbf{versus} -\mathbf{c} + \mathbf{By} = \mathbf{Bi}\}

E. Grafarend (2012)

A note on the quasiconvex Jensen divergences and the quasiconvex Bregman divergences derived thereof

F. Nielsen (2019)

Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family

F. Nielsen (2020)

10.1016/J.JSPI.2009.04.010

The mixture of left–right truncated normal distributions

J. Castillo (2009)

10.1016/J.SPL.2008.10.021

Estimation of the generalized Pareto distribution

J. Castillo (2009)

10.1007/978-3-030-42196-0_2

Modelling Earthquakes: Characterizing Magnitudes and Inter-Arrival Times

C. Ley (2020)

10.1007/978-3-642-22241-2_8

The Fourth Problem of Probabilistic Regression

E. Grafarend (2012)

10.1007/978-3-642-22241-2_12

The Nonlinear Problem of the 3d Datum Transformation and the Procrustes Algorithm

E. Grafarend (2012)

10.1007/978-3-642-22241-2_6

The Third Problem of Probabilistic Regression

E. Grafarend (2012)

On the development of an unsupervised probabilistic algorithm for grayscale fluorescence image segmentation

Magnus Brander (2018)

10.1007/S00180-015-0564-Z

Maximum likelihood estimation for a special exponential family under random double-truncation

Ya-Hsuan Hu (2015)

On power chi expansions of f-divergences

F. Nielsen (2019)

10.1016/j.physa.2010.09.033

Sales distribution of consumer electronics

Ryohei Hisano (2011)

10.1007/978-3-642-22241-2_3

The Second Problem of Algebraic Regression

E. Grafarend (2012)

10.1002/bit.22635

Quantification of non‐specific binding of magnetic micro‐ and nanoparticles using cell tracking velocimetry: Implication for magnetic cell separation and detection

J. Chalmers (2010)

10.1007/978-3-642-22241-2_14

Special Problems of Algebraic Regression and Stochastic Estimation

E. Grafarend (2012)

10.1007/978-3-642-22241-2_13

The Sixth Problem of Generalized Algebraic Regression

E. Grafarend (2012)

10.1080/01621459.1999.10474147

The Best Test of Exponentiality against Singly Truncated Normal Alternatives

J. Castillo (1999)

10.3390/e21050485

On a generalization of the Jensen-Shannon divergence and the JS-symmetrization of distances relying on abstract means

F. Nielsen (2019)

See more