Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Experimentelle Untersuchungen Zur Heilung Durchtrennter Peripherer Nerven

H. Millesi, A. Berger, G. Meîssl
Published 2005 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
SummaryThe behavior of the connective tissue during the healing of transsected nerves was studied. Experiments were carried out with rahbits. The sciatic nerve was trans-sected and repaired using different techniques. Postoperatively the animals were all treated in exactly the same way. The clinical course was registrated carefully, with special attention to the return of the motor function and the occurence and extension of decubital ulcers. Finally the animals were sacrified, and the site of nerve repair was excised and histologically examined using Hämatoxilin, Eosin. Van Gieson, Kresylviolett, Klüver-Barriera, Sudan-Schwarz B, Bodian staining.Two different techniques were compared by operating on the two sciatique nerves of the same animal. Individual factors could be excluded as the result of each two operations was compared in the same individual. A.In 32 rabbits, 64 sciatic nerves were repaired by epineural end-to-end suture (Mersilen 6×0) in order to study the timing of the healing process.1.After 3 days the circumference of the suture site was bridged by a fibrin membrane. Proliferation of connective tissue was seen mainly in the epineurium and the external layers of the perineurium for a short distance both proximal and distal to the suture line. The connective tissue advanced in the direction of the suture line. Obstacles were avoided by going round about on the external side.After 7 days a layer of connective tissue was formed at the circumference of the suture site. This layer originated from the epineurium proximal to the suture line, passed the sutures at their external side and reached the epineurium of the distal stump distal to the suture line.At the 3rd day the first regenerating axons were seen in the proximal stump. Some of them had reached the distal stump at day 7.2.After 14 days there was a firm connective tissue layer developed. There was fibrous tissue around the suture material. According to the tendency of the connective tissue to advance around the external site of obstacles, all the suture material was inside the connective tissue layer and shifted towards the center of the cross section.3.After 21 days there was progressive maturation of the connective tissue. Many regenerated axons had reached the distal stump. There was no tendency to aberration if the straight course of advancement was not blocked e.g. by suture material etc.4.After 5 weeks the perineurium was re-established. Between the two stumps there was a more-or-less broad endoneural scar. Many axons are to be seen within the distal stump having already crossed the suture line; some of them show thickening, loss of contour and fragmentation. As the remnants of the original axons following Wallerian degeneration had already disappeared within the 2nd week, these damaged axons are regenerated axons.5.After 2 months the scar formation is terminated.B.The influence of tension on the connective tissue proliferation. In 26 rabbits, a section of 5mm length (8%) was excised from the sciatic nerve and the two stumps united by end-to-end suture under moderate tension.The gap between the two stumps became filled by scar tissue, which was in these cases much wider. The connective tissue proliferation was increased. There was much more endoneural scar tissue formed, and the perineurium was thickened. Within the proximal and distal stump stretching of the nerve fibres and endoneural fibrosis was present. Many more of the regenerated axons within the distal stumps presented signs of degeneration.The forces which are needed to unite the stumps of a trans-sected nerve were determined.To unite the stumps of a nerve without any defect a force of 5–6 g is necessary. The force increases slowly as the defect increases up to 2 or 3 mm. If a larger defect is present the amount of tension necessary to unite the stumps increases rapidly (see Fig. 3).The functional result after suture under tension was much inferior to the controls (see Figs. 4 and 5).These experiments demonstrate the deterioration of the functional results if a nerve suture is carried out under tension. This corresponds to reports in the literature referring to interior clinical results if the size of nerve defects which are united by end-to-end suture exceed a certain limit.The reason for the inferior results is not only blocking of the suture line by scar tissue but to a certain degree secondary damage to regenerated axons, apparently by shrinkage of the scar tissue.In 10 human cases trans-sected peripheral nerves had been united by end-to-end suture under moderate tension 6–12 months previously. No function returned. Therefore the suture sites were resected and the nerve defects bridged by nerve grafts. The specimens were studied carefully. In all of them much scar tissue was found between the nerve stumps. Suture material with granulomatas could be seen within the cross sections. In 5 cases only a few axons were present in the distal stumps; in 3 cases a larger number were present. Many of them showed signs of recent damage. Since the primary nerve lesion 6–12 months had passed, and this proves that the damaged axons or regenerated axons having suffered secondary damage. The results of the experiments in rabbits are confirmed by this study in human specimens.C.By reducing the tension at the suture site connective tissue proliferation and scar formation could be reduced.D.In 32 rabbits a section 5 mm in length of one sciatic nerve was resected and regrafted into the defect as a free graft. In this experiment the regenerating axons had to cross two suture lines in the nerve and were under the same tension as in the case of end-to-end suture without a defect.In 25 rabbits the sciatic nerve was trans-sected. A nerve graft of 5 mm, provided from the contralateral sciatic nerve was introduced as a free graft. In this group the axons had to cross two suture lines, but the nerve was under reduced tension.In 3 rabbits the total gap between the nerve stumps due to retraction after trans-section (6–8 mm) was bridged by grafts. These nerves were under no tension at all.The connective tissue proliferation decreases with decreasing tension. The endoneural scars were very thin, and in cases with long grafts hardly to be detected.The functional results demonstrated that under favorable conditions the regeneration after grafting is equal to end-to-end suture, and much better than after end-to-end suture under tension (Figs. 4 and 5).E.Wrapping of the suture site by collagen, millipore or silastic membranes increased connective tissue proliferation between nerve and sheath. The functional results were inferior to simple suture.F.Suture material causes granulomatas and fibrosis. Due to the advancement of the connective tissue along the outer site of the sutures they are shifted towards the centre. Therefore in a part of the cross section the axon growth is impeded. The connective tissue proliferation is reduced if only a very small amount of very fine suture material is used.The use of cyanoacrylate glues lead to a high degree of fibrosis and inferior results.Homogenous and autogenous plasma was used by different authors, but severe reactions against fibrin and deviation of the growing axons was observed.G.Natural union. To reduce the operative trauma and to avoid any foreign body reaction nerve grafts were introduced into the gap resulting from retraction of the nerve stumps after trans-section without using any suture, glue or anything else to secure the union. The nerve stumps and the ends of the graft were united very carefully. As the graft was exactly as long as, or even a bit longer than, the gap, there was no tendency to separate. After 20 minutes the ends adhered strongly enough to permit the total nerve, including the graft, to be excised and removed without occurence of separation.H.From the experiments the conclusion was drawn that, when uniting peripheral nerves, tension should be avoided. If there is a defect, nerve grafts yield better results than suture under tension.The following points can be established.1.The origin of the main part of the connective tissue after trans-section of a peripheral nerve is the epineurium. Connective tissue proliferation of the surrounding connective tissue does not play any role if approximation of the stumps in secured.2.The circumference of the suture line is bridged by a fibrin membrane after 3 days and by a layer of connective tissue after 7 days.3.The amount of connective tissue proliferation depends of the tension at the suture line. It is secondarily affected by the operative trauma and by the amount and quality of the suture material. Wrapping does not decrease the connective tissue proliferation.4.Without obstacles such as scars and suture granulomatas the regenerating axons proceed straight ahead without any tendency to aberrate. Wrapping seems therefore not be of any advantage.5.The connective tissue proliferation can be decreased by: Avoiding tension. Reducing the operative trauma. Reducing amount of suture material. Resection of the epineurium as main source of the connective tissue proliferation.6.If approximation without tension is not possible, nerve grafting should be carried out. On the basis of the experimental experience the following operative technique of nerve grafting was developed:The epineurium of the two nerve stumps is resected. A dissection of the fasciculi of the nerve stumps is carried out. Major fasciculi are isolated individually. Minor fasciculi are isolated in groups of 3–5. The ends are resected at different levels according to the amount of trauma or fibrosis present. A sketch is made of the fascicular structure of the two nerve stumps. Using this sketch we try to define the corresponding fasciculi or groups of fasciculi. Between the corresponding fasciculi or groups of fasciculi nerve grafts (sural nerve) are introduced. The grafts are larger than the defect in position of function. Under microscopic contro
This paper references
10.1016/S0140-6736(00)62286-9
FIBRIN SUTURE OF HUMAN NERVES
H. Seddon (1942)
10.1001/ARCHSURG.1958.04370010001001
Nerve injuries in the upper extremity.
R. Larsen (1958)
10.3171/JNS.1948.5.5.0450
Clinical experiences with nerve grafting.
G. Björkesten (1948)
10.1136/bmj.2.5053.1065
Nerve Repair in Civil Practice
O. R. Nicholson (1957)
10.1093/BRAIN/84.1.102
STRESS-STRAIN PHENOMENA IN HUMAN PERIPHERAL NERVE TRUNKS
Sydney Sunderland (1961)
10.1136/PGMJ.16.177.256
War Injuries of Peripheral Nerves
H. Platt (1940)
10.1016/0002-9610(46)90337-6
The repair of peripheral nerve lesions.
T. I. Hoen (1946)
10.1097/00006534-196404000-00002
MICROSURGERY OF PERIPHERAL NERVES
J. Smith (1964)
10.1001/ARCHSURG.1921.01110040176010
NERVE SUTURE: AN EXPERIMENTAL STUDY TO DETERMINE THE STRENGTH OF THE SUTURE LINE
E. M. Miller (1921)
10.1056/NEJM192306211882501
Some Peripheral Nerve Problems
D. Lewis (1923)
10.1007/BF02893564
Die Feinstruktur der neuromatösen Neurotisation von Nerventransplantaten
J. M. Schröder (1970)
10.1007/BF02951253
The experimental use of cortisone in peripheral nerve repair with plasma clot as a suture
R. Indar (1958)
A review of work on peripheral nerve injuries in Great Britain during World War II.
Seddon Hj (1948)
10.1016/S0022-5320(63)80083-0
REGENERATIVE CHANGES IN RAT DORSAL ROOTS FOLLOWING WALERIAN DEGENERATION.
E. Nathaniel (1963)
10.1002/BJS.18003011906
Traction injuries to the lateral popliteal nerve and traction injuries to peripheral nerves after suture
W. B. Highet (1943)
10.1002/BJS.18003012012
The effects of stretching nerves after suture
W. B. Highet (1943)
10.1016/S0140-6736(01)07978-8
FIBRIN SUTURE OF PERIPHERAL NERVES: MEASUREMENT OF THE RATE OF REGENERATION☆
J. Young (1940)
10.1007/978-3-662-11316-5_1
Zur Morphologie der Erkrankungsformen peripherer Nervenfasern
W. Krücke (1967)
10.1001/ARCHSURG.1943.01220130047006
PLASMA CLOT SUTURE OF NERVES: EXPERIMENTAL TECHNIC
I. Tarlov (1943)
Nerve grafting and other unusual forms of nerve repair.
Seddon Hj (1954)
10.1001/JAMA.1944.02850470005002
AUTOLOGOUS PLASMA CLOT SUTURE OF NERVES: ITS USE IN CLINICAL SURGERY
I. Tarlov (1944)
10.3181/00379727-52-14141P
Repair of Peripheral Nerves by Grafts of Frozen-Dried Nerve.∗
P. Weiss (1943)
10.1007/BF01401699
Experimentelle Erfahrungen mit Kollagenfolien über nahtlose Nervenanastomosen
A. Berger (2005)
10.1097/00000658-193402000-00006
EXPERIMENTAL STUDIES IN NERVE TRANSPLANTS
L. Davis (1934)
10.2106/00004623-196244010-00011
A follow-up study of 172 peripheral nerve injuries in the upper extremity in civilians.
H. Sakellarides (1962)
Suture of war injuries to peripheral nerves. Clinical studies of results
G. Björkesten (1947)
10.7326/0003-4819-32-2-349_2
Atlas of peripheral nerve injuries
W. Lyons (1949)
10.3171/JNS.1945.2.1.0049
Nerve Grafts: the Importance of an Adequate Blood Supply*
I. Tarlov (1945)
10.3171/JNS.1948.5.1.0062
Nerve regeneration; a comparative experimental study following suture by clot and thread.
I. Tarlov (1948)
10.2106/00004623-195537020-00008
The place of nerve-grafting in orthopaedic surgery.
D. Brooks (1955)
10.2106/00004623-195840040-00029
Peripheral Nerve Regeneration. A Follow-up Study of 3,656 World War II Injuries. Edited by Barnes Woodhall, M.D., and Gilbert W. Beebe, Ph.D. Washington, United States Government Printing Office, 1956
E. A. Kahn (1958)
10.1001/ARCHNEURPSYC.1948.02300380051004
Tensile strength of human nerves; an experimental physical and histologic study.
C. Liu (1948)
10.1007/BF02957150
Abstracts from current literature on diseases of the blood
J. Mcg (1931)
10.1001/ARCHNEUR.1960.03840110042005
Ischemic degeneration of nerve fibers.
M. Blunt (1960)
10.1093/BRAIN/65.3.281
THE REPAIR OF LARGE GAPS IN THE PERIPHERAL NERVES
F. K. Sanders (1942)
10.1093/BRAIN/65.4.373
FUNCTIONAL RECOVERY FOLLOWING NERVE GRAFTS AND OTHER TYPES OF NERVE BRIDGE
E. Gutmann (1942)



This paper is referenced by
Avaliação da eficácia do reparo na regeneração do nervo ciático do rato com utilização de sutura, adesivo de fibrina ou combinação das duas técnicas
S. Paulo. (2004)
Further Experience with the Median , Ulnar
G. Meissl ()
Emprego de veias preservadas em glicerol como substituto de enxerto de nervo: estudo experimental em ratos
S. Paulo. (2007)
TheRe-innervation oftheTongueandSalivary Glands after Lingual NerveRepair byStretch, Sural NerveGraft orFrozen MuscleGraft
Pw Robinson (2011)
10.1007/978-3-211-72958-8_8
Bridging defects: autologous nerve grafts.
H. Millesi (2007)
Reconstr ução de defeito de ner vo fibular em r atos com veia glicer olada: análise histológica e funcional
S. Paulo. (2013)
10.1007/BF00696792
Regeneration of a transected peripheral nerve
W. Jurecka (2004)
10.1007/BF00453481
A comparative experimental study on nerve repair
D. Boedts (2004)
10.1177/1753193411422685
Experience of using the bioresorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for nerve repair in peripheral nerve defects: Report on a series of 28 lesions
S. Chiriac (2012)
10.1016/0266-7681_87_90043-X
Micro-Surgical Fascicular Nerve Repair: A Morphological Study of the Endoneurial Bulge
Simon J. Archibald (1987)
10.1016/J.RICMA.2015.06.011
Tratamiento quirúrgico de los síndromes dolorosos regionales complejos tipo II y utilidad de la monitorización neurofisiológica intraoperatoria
R. S. Rosales (2015)
10.1007/BF02626396
Regeneration in autologous and allogenic nerve grafts in the rat with MHC-disparity with and without cyclosporin A preliminary Report
E. Schallen (2007)
10.1016/J.HCL.2007.02.003
The role of microsurgery in nerve repair and nerve grafting.
L. Dvali (2007)
10.1007/BF01670521
Functional reconstruction after facial paralysis: A survey
A. Berger (2005)
10.1007/BF01401975
Surgical rehabilitation of facial nerve
W. Draf (2005)
10.1016/0266-7681_90_90004-N
Peripheral nerve surgery today. Turning point or continuous development? (Part IV) Vienna, Austria, November 23-26, 1991.
Hanno Millesi (1990)
10.1007/BF01282652
35. Die operative Wiederherstellung verletzter Nerven
H. Millesi (2005)
The Effect of Omental Vascularization on Peripheral Nerve Healing ( Experimental Study )
M. Özbek (2008)
10.1007/BF01670520
Progress in peripheral nerve reconstruction
H. Millesi (2005)
10.1007/BF02892722
Regeneration in autologous and allogenic nerve grafts in the rat with MHC-disparity with and without cyclosporin a: A preliminary report
E. Schaller (2008)
10.1007/BF01556388
Microsurgery of peripheral nerves
H. Millesi (2005)
10.1007/BF00465558
Chirurgie der Nerven im HNO-Bereich
A. Miehlke (2004)
10.1515/BIOMAT.2006.7.2.74
Der Einsatz von Schwannzellen und textilen Zellträgerstrukturen bei der peripheren Nervenregeneration
A. Bozkurt (2006)
POLYGLYCOLIC ACID TUBE ASSOCIATED WITH GM 1 IN REGENERATION OF PERIPHERAL NERVES
M. P. Costa ()
tuB o de Ácido Poliglicólico e gm1 Na regeNeração de Nervos Periféricos polyglycolic AciD tube AssociAteD with gm1 iN regeNerAtioN of peripherAl NerVes
M. Paulino (2009)
10.1007/BF00264546
An instrument for obtaining nerve grafts
H. Anderl (2004)
10.1007/PL00003419
Autologous transplantation and neurolysis of the brachial plexus following trauma
G. Nikkhah (2016)
10.1007/978-3-642-55592-3_4
Spezielle Weichteilsch??den
A. Berger (2003)
10.1007/BF00280913
Reconstruction of the face through cross-face-nerve transplantation in facial paralysis
H. Anderl (2004)
10.1007/BF01405875
Nerve suture without tension, a method for repairing transected peripheral nerves
W. Usbeck (2005)
10.1590/S1413-78522009000500007
Tubo de ácido poliglicólico e GM1 na regeneração de nervos periféricos
M. P. Costa (2009)
10.1007/BF01675646
Advances in peripheral nerve repair in emergency surgery of the hand
A. Berger (2005)
See more
Semantic Scholar Logo Some data provided by SemanticScholar