Online citations, reference lists, and bibliographies.
← Back to Search

Physical Properties Of Trabecular Bone

J. Galante, W. Rostoker, R. Ray
Published 2005 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The purpose of this investigation was to determine the relation between compressive strength and density of human vertebral bone, the relation between trabecular orientation and compressive strength, and the effects of the strain rate on compressive strength. A total of 71 samples obtained at 23 post mortem examinations were investigated. Density determinations were made and two different densities were calculated: (1) the apparent density as wet weight divided by the total sample volume; and (2) real density as wet weight divided by the volume of bone matrix determined by water displacement.Compression test measurements were made on the fresh samples using an Instron materials testing machine at controlled deformation rates. The results indicated a highly significant relation between apparent density and compressive strength. Similar relations were found between dry weight per total sample volume and ash weight per total sample volume and compressive strength. As the apparent density increased, the compressive strength of the sample decreased. A negative regression between real density and compressive strength was found in one of the experimental series of this investigation where, as the density of the bone matrix increased the compressive strength of the sample decreased. This relation was not significant in the other two experimental series.The strength of vertebral bone was significantly higher along the superior-inferior axis or vertical axis than along the two other directions.Samples showed a significantly greater ability to withstand compression when the deformation rate was 1 cm per minute than they did when the rate was 0.01 cm per minute.RésuméL'objet de ce travail est de déterminer le rapport existant entre une force compressive et la densité osseuse des vertèbres humaines, ainsi que le rapport entre l'orientation des travées et la force de compression et enfin les effets du degré de charge sur la force compressive. Ce travail est effectué sur 71 échantillons prélevés au cours de 23 autopsies. Les densités sont déterminées et 2 types de densités sont calculées: 1. la densité apparente, en poids humide, divisée par le volume total de l'échantillon et 2. la densité réelle, en poids humide, divisée par le volume de la matrice osseuse, déterminé par le déplacement de l'eau.Des mesures de tests de compression sont effectuées sur des échantillons frais en utilisant une machine à tester les matériaux, de type Instron, sous des charges de déformation déterminées. Les résultats indiquent un rapport hautement significatif entre la densité apparente et la force de compression. Des rapports similaires sont trouvés entre le poids sec par volume total d'échantillon et le poids de cendre par volume total d'échantillon et la force compressive. Larsque la densité apparente augmente, la force compressive de l'échantillon diminue. Une régression négative entre la densité réelle et la force compressive est observée dans l'une des séries expérimentales de ce travail, où lorsque la densité de la matrice osseuse augmente, la force de compression de l'échantillon décroit. Ce rapport n'est pas significatif dans les deux autres séries expérimentales.La force de l'os vertébral est significativement plus élevée le long de l'axe supéro-inférieur ou axe vertical que le long des deux autres directions. Certains échantillons présentent une capacité significativement plus élevée de résistance à la compression, lorsque la charge de déformation est de 1 cm par minute, que lorsqu'elle est de 0,01 cm par minute.ZusammenfassungDas Ziel dieser Untersuchung war, den Zusammenhang zwischen dem Widerstand gegen Kompression und der Dichte menschlicher Wirbel, den Zusammenhang zwischen der Anordnung der Trabekel und dem Kompressionswiderstand sowie die Auswirkung von der Belastung auf den Kompressionswiderstand festzustellen. Insgesamt wurden bei 23 Autopsien 71 Proben entnommen und untersucht. Es wurden Dichtebestimmungen vorgenommen und zwei verschiedene Dichten errechnet: 1. die scheinbare Dichte, bestimmt aus dem Naßgewicht dividiert durch das Gesamtprobenvolumen; 2. die effektive Dichte, bestimmt aus dem Naßgewicht dividiert durch das Volumen der Knochenmatrix, welches mittels Wasserverdrängung festgestellt werden konnte.An frischen Proben wurden Test-Druckmessungen bei verschiedenen bekannten Deformationsgraden mittels eines Instron-Materialprüfgerätes durchgeführt. Die Resultate ergaben eine hochsignifikante Beziehung zwischen der scheinbaren Dichte und dem Widerstand gegen Kompression. Gleiche Beziehungen fanden sich zwischen dem Kompressionswiderstand einerseits und dem Trockengewicht sowie Aschegewicht andererseits, beide auf das Gesamtprobenvolumen bezogen. Bei Zunahme der scheinbaren Dichte nahm der Kompressionswiderstand der Probe ab. Eine negative Regression zwischen effektiver Dichte und Kompressions-widerstand wurde in einer der Versuchsreihen dieser Experimente gefunden, wo bei zunehmender Dichte der Knochenmatrix der Kompressionswiderstand der Proben abnahm. Diese Beziehung war in den andern beiden Versuchsreihen nicht signifikant.Der Widerstand der Wirbelkörper war entlang der vertikalen Achse signifikant höher als in den andern beiden Richtungen.Bei einem Deformationsgrad von 1 cm/min zeigten die Proben eine signifikant höhere Widerstandskraft als bei einem solchen von 0,01 cm/min.
This paper references
Elasticität und Festigkeit der Knochen
A. Rauber (1876)
Determination of the strength of the cancellous bone in the head and neck of the femur.
M. Hardinge (1949)
10.1007/BF02008077
Variations in strength of vertebrae with age and their relation to osteoporosis
G. H. Bell (2005)
Factors affecting the elasticity of bone.
J. W. Smith (1959)
10.1093/GERONJ/16.2.120
Quantitative bone strength measurements in senile osteoporosis.
G. Vose (1961)
10.1111/j.1469-185X.1961.tb01596.x
BIOLOGICAL FUNCTIONS OF COLLAGEN
R. Harkness (1961)
10.3109/17453676708989618
The effect of orientation on some mechanical properties of femoral cortical specimens.
C. Hirsch (1967)
Aus der Chirurgischen Universitiitsklinik G0ttingen (Direktor: Prof. Dr. tt~Ns H~LL~R). i~er das elastische Verhalten der Achillessehne im Belastungsversuch*.
K. Stucke (1950)
Compact bone as a nonisotropie material
W. T. Dempster (1952)
Untersuchungen fiber Elastizit ~ tsverh / ~ ltnisse in den menschlichen Rfickenwirbeln mit Bemerkungen fiber die Pathogenese der Deformit ~ ten
K. H. Knese (1902)
10.3109/ORT.1965.36.SUPPL-83.01
A rheologic model for cortical bone. A study of the physical properties of human femoral samples.
E. Sedlin (1965)
10.1002/AJA.1000910302
Compact bone as a non-isotropic material.
W. T. Dempster (1952)
10.2106/00004623-196648020-00007
Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content.
J. K. Weaver (1966)
Das Verhalten spongi 6 sen Knochens im Druekund Sehlagversueh
C. cke (1931)
Age changes in cancellous bone
K. J. Holley (1969)
Regional differences in some physical properties of human spongy bone
F. G. Evans (1961)
Observations bearing on the problem of osteoporosis
M. R. Urist
10.3109/ORT.1967.38.SUPPL-100.01
Tensile properties of the human lumbar annulus fibrosus.
J. Galante (1967)
10.1007/BF02008076
Bone water studied by differential centrifugation
J. Arnold (2005)
10.1002/AR.1091440105
The relation of microscopic mineralization to intrinsic bone strength
G. Vose (1962)
Strain rate sensitivity of certain biological materials final report
E. F. Byars (1965)
Quantitation of Mineralization of Bone As an Organ and Tissue in Osteoporosis
J. Arnold (1960)
10.1152/JAPPL.1951.3.9.563
Regional differences in some of the physical properties of the human femur.
F. Evans (1951)
10.3109/17453676608989401
Factors affecting the determination of the physical properties of femoral cortical bone.
E. Sedlin (1966)
Determination of the strength of the cancellous bone in the head and neck of the femur.
Hardinge Mg (1949)
10.1007/BF01402534
Über das elastische Verhalten der Achillessehne im Belastungsversuch
K. Stucke (2005)



This paper is referenced by
10.1191/1460408604ta295oa
Review of the biomechanics and patterns of limb fractures
A. McGee (2004)
10.1007/B138320
Modeling of Biological Materials
F. Mollica (2007)
10.1016/J.CARBON.2014.07.052
Bone growth on Reticulated Vitreous Carbon foam scaffolds and implementation of Cellular Automata modeling as a predictive tool
Jarema S. Czarnecki (2014)
A 2 Cancellous Bone
Christopher J Hernandez (2017)
KUOPION YLIOPISTON JULKAISUJA C. LUONNONTIETEET JA YMPÄRISTÖTIETEET 214 KUOPIO UNIVERSITY PUBLICATIONS C. NATURAL AND ENVIRONMENTAL SCIENCES 214
Joanna Sierpowska (2007)
10.15480/882.1526
Cemented Tibial Tray Fixation
K. Nagel (2017)
Effects of geometric and material property changes on the apparent elastic properties of cancellous bone
W. Lievers (2009)
10.1007/BF02059055
Reproducibility of specific gravity estimations on bone samples from different sites of cattle and sheep
N. Siemon (2005)
10.1080/10255842.2015.1014347
Singularity-free finite element model of bone through automated voxel-based reconstruction
Luigi Esposito (2016)
Determining the modulus of intact bovine vertebral cancellous bone tissue: Development and validation of a protocol
Andrew Craig Engbretson (2010)
10.1007/978-0-8176-4411-6_6
Mechanical Properties of Human Mineralized Connective Tissues
R. Santis (2007)
10.1016/J.BONE.2006.06.001
A biomechanical perspective on bone quality.
C. Hernandez (2006)
10.1016/J.JBIOMECH.2007.08.003
Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
E. Perilli (2008)
10.1016/J.JBIOMECH.2003.12.037
Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
E. Morgan (2004)
10.1115/1.4032850
A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion.
M. Kia (2016)
10.1002/ar.23090
A Comparative Study of Trabecular Bone Mass Distribution in Cursorial and Non‐Cursorial Limb Joints
H. Chirchir (2015)
10.1007/978-1-4757-2264-2
Accidental Injury
A. Nahum (1993)
TRANSLATIONAL STUDIES INTO THE EFFECTS OF EXERCISE ON ESTIMATED BONE STRENGTH
A. Weatherholt (2015)
10.1016/S1570-8659(03)12004-2
Human models for crash and impact simulation
E. Haug (2004)
10.1002/cnm.2696
Multiphasic modelling of bone-cement injection into vertebral cancellous bone.
C. Bleiler (2015)
10.14288/1.0077302
Studies of fall risk and bone morphology in older women with low bone mass
T. Liu-Ambrose (2004)
10.1115/1.2205370
The effect of damage on the viscoelastic behavior of human vertebral trabecular bone.
T. Bredbenner (2006)
10.1007/978-1-4471-5451-8_116
The Compressive Behavior of Bone as a Two-Phase Porous Structure
Alun P Wall (2014)
10.1016/J.JEMBE.2009.03.012
Mechanics of the right whale mandible : full scale testing and finite element analysis
I. Tsukrov (2009)
10.1016/J.JBIOMECH.2004.09.027
Biomechanics of cellular solids.
L. Gibson (2005)
10.1016/B978-012369390-7/50005-8
Biomechanics of Vertebral Bone
T. M. Keaveny (2006)
10.1007/978-3-319-04169-8_1
Basic Notions on Mobility Function
P. Rabischong (2014)
Spinal (in)stability in metastatic bone disease. Experimental, computational, and clinical perspectives
K.H.J. Groenen (2018)
10.1007/BF01673420
Vertebral structure and strengthIn vivo andIn vitro
L. Mosekilde (2005)
10.1002/9783527632732.CH6
Constitutive modeling of the mechanical behavior of trabecular bone - continuum mechanical approaches
A. Öchsner (2010)
Comparison of the CompressionStrengthof Human Vertebral Bodies with the Mass and Densityof Apatite : a Study by 31 P NMR Spectroscopy
Ravi ()
10.1115/1.1645866
Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging.
Xiang Wang (2004)
See more
Semantic Scholar Logo Some data provided by SemanticScholar