Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Temperature-programmed Synthesis Of Micron-sized Multi-responsive Microgels

Zhiyong Meng, M. Smith, L. Lyon
Published 2009 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
A new synthetic protocol for the synthesis of large diameter (2.5 to 5 μm), temperature-, and pH-responsive microgels via aqueous surfactant-free radical precipitation copolymerization is presented. We have found that in this size range, which is not typically attainable using traditional dispersion polymerization approaches, excellent monodispersity and size control are achieved when the synthesis employs a programmed temperature ramp from 45 to 65 °C during the nucleation stage of the polymerization. A combined kinetic and thermodynamic hypothesis for large particle formation under these conditions is described. Particle sizes, volume phase transition temperatures, and pH responsivity were characterized by particle tracking and photon correlation spectroscopy to illustrate their similar behavior to particles made via more traditional routes. These particles have been enabling for various studies in our group where microscopic visualization of the particles is required.
This paper references
10.1021/LA0102354
Enzyme-Regulated Microgel Collapse for Controlled Membrane Permeability
K. Ogawa (2001)
10.1016/J.CIS.2007.07.002
Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems.
B. Tan (2008)
10.1007/S00396-007-1740-7
Electrokinetics of soft particles
H. Ohshima (2007)
10.1021/LA047430D
Osmotic compressibility of soft colloidal systems.
B. Tan (2005)
10.1016/S0927-7757(00)00490-8
Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels
K. Kratz (2000)
10.1023/A:1024411332492
Tunable Microfabricated Hydrogels—A Study in Protein Interaction and Diffusion
C. Khoury (2003)
10.1021/CM048844V
Optical and Acoustic Studies of pH-Dependent Swelling in Microgel Thin Films
M. Serpe (2004)
10.1021/JP073122N
Crystallization behavior of soft, attractive microgels.
Zhiyong Meng (2007)
10.1021/BM060718S
1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.
C. Nolan (2006)
10.1016/S0168-3659(00)00236-4
Lipid-coated microgels for the triggered release of doxorubicin.
P. Kiser (2000)
10.1007/S003960000350
Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles
T. Hellweg (2000)
10.1039/B718441G
pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue.
T. Freemont (2008)
10.1002/ANIE.200503102
Label-free biosensing with hydrogel microlenses.
Jongseong Kim (2006)
10.1016/0166-6622(86)80274-8
Preparation of aqueous latices with N-isopropylacrylamide
Robert P. Pelton (1986)
10.1007/S003960050040
The electrophoresis of poly(N-isopropylacrylamide) microgel particles
M. Rasmusson (2000)
10.1016/0032-3861(63)90034-X
Viscosity and swelling behaviour of lightly crosslinked microgels
C. L. Sieglaff (1963)
10.1002/ADMA.200601824
pH–Responsive Microrods Produced by Electric-Field Induced Aggregation of Colloidal Particles
D. Snoswell (2007)
10.1002/SMLL.200600590
Temperature-, pH-, and magnetic-field-sensitive hybrid microgels.
Sanchita Bhattacharya (2007)
10.1002/POL.1951.120060404
Structure and thermodynamics of elastomeric microgel
A. I. Medalia (1951)
10.1021/JP026783N
Influence of particle volume fraction on packing in responsive hydrogel colloidal crystals
S. B. Debord (2003)
10.1007/BF00659460
The kinetics of poly(N-isopropylacrylamide) microgel latex formation
X. Wu (1994)
10.1016/S0001-8686(99)00023-8
Temperature-sensitive aqueous microgels.
R. Pelton (2000)
10.1007/S00396-002-0734-8
The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes
Liusheng Zha (2002)
10.1007/S003960000329
Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions
H. Senff (2000)
10.1016/J.BIOS.2006.05.015
Amperometric tyrosinase biosensor based on polyacrylamide microgels.
J. P. Hervás Pérez (2006)
10.1002/(SICI)1099-0518(19990615)37:12<1823::AID-POLA12>3.0.CO;2-#
Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization
D. Duracher (1999)
10.1002/CBER.19350680841
Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly‐styrol
H. Staudinger (1935)
10.1039/B714741D
pH-Responsive polymers: synthesis, properties and applications.
S. Dai (2008)
10.1021/JP068535N
Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels
D. Suzuki (2007)
10.1006/JCIS.1996.0217
Methods of Digital Video Microscopy for Colloidal Studies
J. Crocker (1996)
10.1007/BF00652347
Preparation of monodisperse, reactive hydrogel microspheres and their amphoterization
M. Kashiwabara (1995)
10.1021/JP071630R
Phase behavior in highly concentrated assemblies of microgels with soft repulsive interaction potentials.
A. N. S. John (2007)
10.1021/JA0519076
Bioresponsive hydrogel microlenses.
Jongseong Kim (2005)
10.1021/JA01151A024
The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium1
I. M. Kolthoff (1951)
10.1016/0033-0655(92)80033-S
Dispersion and solution rheology control with swellable microgels
M. Wolfe (1992)
10.1021/LA991292O
A Study of the Effect of Electrolyte on the Swelling and Stability of Poly(N-isopropylacrylamide) Microgel Dispersions
E. Daly (2000)
10.1016/S0142-9612(03)00095-4
Microstructural modifications induced by the entrapped glucose oxidase in cross-linked polyacrylamide microgels used as glucose sensors.
Jorge Rubio Retama (2003)
10.1063/1.479430
Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres
H. Senff (1999)
10.1002/POLA.22133
Synthesis, characterization, and influence of synthesis parameters on particle sizes of a new microgel family
Virginia Sáez Martínez (2007)
10.1007/BF02612145
Über hochpolymere Verbindungen
H. Staudinger (2007)
10.1002/ADMA.200305675
Colloidal Hydrogel Microlenses
M. Serpe (2004)
10.1021/jp711581h
Role of methyl in the phase transition of poly(N-isopropylmethacrylamide).
Yecang Tang (2008)
10.1021/JA0474143
Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels.
Satish Nayak (2004)
10.1007/S00396-001-0634-3
A thermosensitive amphoteric microsphere and its potential application as a biological carrier
Shi-jiang Fang (2002)
10.1007/S003960050512
The volume transition in thermosensitive core–shell latex particles containing charged groups
J. Kim (1999)
10.1002/ADFM.200304338
From Hybrid Microgels to Photonic Crystals
Shengqing Xu (2003)
10.1007/S00396-006-1605-5
Synergistic depression of volume phase transition temperature in copolymer microgels
Martina Keerl (2006)
10.1016/0001-8686(94)00222-X
The preparation, characterisation and applications of colloidal microgels
M. Murray (1995)
10.1146/ANNUREV.PHYSCHEM.47.1.421
VIDEO MICROSCOPY OF MONODISPERSE COLLOIDAL SYSTEMS
C. Murray (1996)
10.1002/POLA.10259
Preparation of poly(N‐ethyl methacrylamide) particles via an emulsion/precipitation process: The role of the crosslinker
P. Hazot (2002)
10.1007/S00396-006-1631-3
Preparation of pH-sensitive hydrogel microspheres of poly(acrylamide-co-methacrylic acid) with sharp pH–volume transition
Henmei Ni (2007)
10.1007/978-1-4613-2389-1
Dynamic Light Scattering
R. Pécora (1985)
10.1021/MA001398M
Synthesis and Characterization of Multiresponsive Core−Shell Microgels
Clinton D. Jones and (2000)
10.1007/S00396-007-1805-7
Size-controlled synthesis of monodisperse core/shell nanogels
W. Blackburn (2008)
10.1021/MA00172A029
Phase transition of submicron gel beads
Yoshiharu Hirose (1987)
10.1007/BF00656929
Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres
H. Kawaguchi (1992)
10.1021/JP972990P
Synthesis and Volume Phase Transition of Poly(methacrylic acid-co-N-isopropylacrylamide) Microgel Particles in Water
S. Zhou (1998)
10.1119/1.11184
Theory of simple liquids
J. Hansén (1976)
10.1295/POLYMJ.23.955
Hydrogel Microspheres II. Precipitation Copolymerization of Acrylamide with Comonomers to Prepare Monodisperse Hydrogel Microspheres
H. Kawaguchi (1991)
10.1021/JA037118A
Nanogel nanosecond photonic crystal optical switching.
C. Reese (2004)
10.1002/POL.1958.1203312611
Microgel: An idealized polymer molecule
V. Shashoua (1958)
10.1295/POLYMJ.20.903
Hydrogel Microspheres I. Preparation of Monodisperse Hydrogel Microspheres of Submicron or Micron Size
H. Kawaguchi (1988)
10.1007/S003960050470
Characterization of cross-linked poly(N-isopropylmethacrylamide) microgel latexes
D. Duracher (1999)
10.1021/JP048486J
Microgel Colloidal Crystals
L. Lyon (2004)
10.1021/LA015734J
Electrosteric Stabilization of Colloidal Dispersions
G. Fritz (2002)
10.1021/MA000386Y
Poly(divinylbenzene) Microspheres as an Intermediate Morphology between Microgel, Macrogel, and Coagulum in Cross-Linking Precipitation Polymerization
J. S. Downey (2001)
10.1007/S00396-004-1048-9
Influence of polyelectrolyte multilayer adsorption on the temperature sensitivity of poly(N-isopropylacrylamide) (PNiPAM) microgels
Nils Greinert (2004)
10.1007/S00289-004-0295-8
Effect of Regime of Addition of Initiator on TEMPO-Mediated Polymerization of Styrene
F. Díaz-Camacho (2004)
10.1039/FT9969205013
Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects
M. Snowden (1996)



This paper is referenced by
10.1039/c6sm00140h
Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure.
O. Virtanen (2016)
10.1021/la302331s
Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-Pickering properties.
W. Richtering (2012)
10.1021/bm200266z
Lipogels: single-lipid-bilayer-enclosed hydrogel spheres.
Q. Saleem (2011)
10.1021/acs.langmuir.8b00230
Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets.
M. Takizawa (2018)
10.1021/la4025537
Multilayered composite microgels synthesized by surfactant-free seeded polymerization.
D. Suzuki (2013)
10.1007/S10965-013-0206-5
Thermo-responsive behavior of radiation-induced poly(N-isopropylacrylamide)/polyethylene oxide nanocomposite
H. L. A. El-Mohdy (2013)
10.1021/am1012722
A "paint-on" protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication.
Courtney D. Sorrell (2011)
10.1039/C4RA06099G
Poly(N-isopropylacrylamide) microgel-based thin film actuators for humidity sensing
Molla R. Islam (2014)
10.1002/ADFM.201203692
Biomimetic Hydrogel‐Based Actuating Systems
L. Ionov (2013)
10.1007/12_2010_70
Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization
A. Pich (2010)
10.1021/la401297b
Adsorption and release of active species into and from multifunctional ionic microgel particles.
Haobo Chen (2013)
10.1021/jp207138f
Deswelling kinetics of color tunable poly(N-isopropylacrylamide) microgel-based etalons.
Matthew C D Carter (2011)
10.1002/ADFM.201001714
Color Tunable Poly (N-Isopropylacrylamide)-co-Acrylic Acid Microgel–Au Hybrid Assemblies
Courtney D. Sorrell (2011)
10.1021/la403058t
Dynamic materials from microgel multilayers.
M. W. Spears (2014)
10.1039/c9sm01779h
Preparation of colloidal molecules with temperature-tunable interactions from oppositely charged microgel spheres.
L. Månsson (2019)
10.1002/9783527646425.CH9
Microgels and Biological Interactions
M. Smith (2012)
10.1016/J.CEJ.2018.03.082
Surfactant-free synthesis of extremely small stimuli-responsive colloidal gels using a confined impinging jet reactor
M. Kather (2018)
10.1039/C6PY01195K
The next step in precipitation polymerization of N-isopropylacrylamide: particle number density control by monochain globule surface charge modulation
O. Virtanen (2016)
10.1002/cphc.201800138
A Simple Device Based on Smart Hollow Microgels for Facile Detection of Trace Lead(II) Ions.
Y. Wang (2018)
10.1039/C3TB21143F
Thermoresponsive copolymer microgels.
Y. Hertle (2013)
10.1007/S00396-011-2401-4
Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes
J. Kleinen (2011)
10.1002/MACP.201500118
Can the Reaction Mechanism of Radical Solution Polymerization Explain the Microgel Final Particle Volume in Precipitation Polymerization of N-Isopropylacrylamide?
O. Virtanen (2015)
10.1016/j.jcis.2015.09.049
A confocal microscopy study of micron-sized poly(N-isopropylacrylamide) microgel particles at the oil-water interface and anisotopic flattening of highly swollen microgel.
Man-hin Kwok (2016)
10.1039/C0PY00010H
Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization
N. Sanson (2010)
10.1021/acs.langmuir.5b01438
Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology.
Shilin Huang (2016)
10.1007/S00396-010-2246-2
Effects of precipitate agents on temperature-responsive sol–gel transitions of PLGA–PEG–PLGA copolymers in water
L. Yu (2010)
10.1007/S00396-010-2356-X
Effects of pH and temperature on assembly of multiresponsive Janus microgels
Y. Umeda (2011)
10.1021/la403598s
Immobilization of water-soluble HRP within poly-N-isopropylacrylamide microgel particles for use in organic media.
K. Gawlitza (2013)
10.1021/ACSAMI.6B10131
Catalytic Formation of Disulfide Bonds in Peptides by Molecularly Imprinted Microgels at Oil/Water Interfaces.
Xiantao Shen (2016)
10.1039/C3SM50248A
Degradable microgels synthesized using reactive polyvinylalkoxysiloxanes as crosslinkers
G. Agrawal (2013)
10.1016/J.CEJ.2019.05.101
Model-based prediction of the hydrodynamic radius of collapsed microgels and experimental validation
F. Jung (2019)
Self-assembly and chemo-ligation strategies for polymeric multi-responsive microgels
Zhiyong Meng (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar