Online citations, reference lists, and bibliographies.

The BIE Analysis Of The Berger Equation

J. Sládek, V. Sládek
Published 1983 · Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
SummaryAn iterative solution of the nonlinear integro-differential Berger equation by the boundary integral equation method is proposed. The fundamental solution of the linearized Berger equation is used. Both formulations of the problem through the physical and non-physical quantities are given. The proposed method of solution is applied to numerical computation of the finite deflection of a thin circular plate under a concentrated load. An analytical solution of the linearized Berger equation in the case of rotationally symmetrical problem is found.ÜbersichtBine iterative Lösung der nichtlinearen integrodifferentialen Gleichungen von Berger mittels der Methode der Integralgleichungen wird vorgelegt. Die fundamentale Lösung der linearisierten Gleichungen von Berger wird angewendet. Zwei alternative Formulierungen des Problems mit physikalischen und nichtphysikalischen Größen sind angeführt. Die vorgelegte Lösungsmethode wird zur numerischen Berechnung der Durchbiegung einer mittels Einzellast belasteten, dünnen Kreisplatte angewendet. Fur den Fall eines rotationssymmetrischen Problems wurde eine analytische Lösung der linearisierten Bergerschen Gleichungen gefunden.



This paper is referenced by
10.1016/J.ENGANABOUND.2005.03.003
General solutions and fundamental solutions of varied orders to the vibrational thin, the Berger, and the Winkler plates
W. Chen (2005)
10.1299/JSMEA.44.483
Large Deflection Analysis of Rectangular Plates on Two-parameter Elastic Foundation by the Boundary Strip Method
T. Horibe (2001)
Distance function wavelets - Part II: Extended results and conjectures
W. Chen (2002)
Trefftz method for large deflection of plates with application of evolutionary algorithms
T. Klekiel (2006)
10.1299/JSMEA.44.231
Large Deflection Analysis of Beams on Two-Parameter Elastic Foundation Using the Boundary Integral Equation Method
T. Horibe (2001)
10.1016/J.ENGANABOUND.2015.03.005
The local Kansa׳s method for solving Berger equation
Jingyu Yang (2015)
10.1007/S10665-004-6091-5
Large deformation of shear-deformable plates by the boundary-element method
J. Purbolaksono (2005)
Boundary knot method for Laplace and biharmonic problems
W. Chen (2003)
10.1007/S00466-002-0375-2
A meshless method for large deflection of plates
J. Sladek (2003)
10.1016/B978-0-12-416739-1.00003-2
BEM for Other Plate Problems
John T. Katsikadelis (2014)
10.1016/J.ENGANABOUND.2018.02.007
The method of fundamental solutions for solving non-linear Berger equation of thin elastic plate
Bin Lei (2018)
10.1016/J.APM.2019.04.022
Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials
Ömer Oruç (2019)
Semantic Scholar Logo Some data provided by SemanticScholar