Online citations, reference lists, and bibliographies.

The Relation Between KMS States For Different Temperatures

C. Jaekel
Published 1998 · Physics, Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract. Given a thermal field theory for some temperature $$ \beta^-1 $$ , we construct the theory at an arbitrary temperature $$ 1/\beta' $$ . Our work is based on a construction invented by Buchholz and Junglas, which we adapt to thermal field theories. In a first step we construct states which closely resemble KMS states for the new temperature in a local region $$ \mathcal O_{\circ} \subset \mathbb{R}^4 $$ , but coincide with the given KMS state in the space-like complement of a slightly larger region Ô. By a weak*-compactness argument there always exists a convergent subnet of states as the size of $$ \mathcal O_{\circ} $$ and Ô tends towards $$ \mathbb{R}^4 $$ . Whether or not such a limit state is a global KMS state for the new temperature, depends on the surface energy contained in the layer in between the boundaries of $$ \mathcal O_{\circ} $$ and Ô. We show that this surface energy can be controlled by a generalized cluster condition.
This paper references
10.1090/s0002-9904-1965-11247-2
Review: R. F. Streater and A. S. Wightman, PCT, Spin and statistics, and all that
D. Ruelle (1965)
10.2140/pjm.1974.50.309
Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule.
H. Araki (1974)
Springer-Verlag Berlin-Heidelberg-New York
E. Zwicker (1998)
Real - and imaginarytime field theory at finite temperature and density
N. P. LvW Landsman (1987)
10.1016/0022-1236(90)90104-S
Nuclear maps and modular structures. I. General properties
D. Buchholz (1990)
Algebraic properties of thermal field theories, ESI-preprint, in preparation
C D Jä B ] Jäkel
10.1016/0370-1573(87)90121-9
Real- and imaginary-time field theory at finite temperature and density
N. P. Landsman (1987)
10.1007/BF00417464
Local properties of equilibrium states and the particle spectrum in quantum field theory
D. Buchholz (1986)
Thermodynamisches Gleichgewicht und Energiespektrum in der Quantenfeldtheorie
P. Junglas (1987)
10.1103/PhysRev.115.1342
Theory of Many-Particle Systems. I
P. Martin (1959)
Algebraic properties of thermal quantum field theories, in preparation
C D Jä B ] Jäkel
On the uniqeness of the equilibrium state for an interacting fermion gas at high temperatures and low densities , Lett
C. D. Jäkel (1995)
Theory of Many-Particle Systems
I. P. Bazarov (1989)
10.1016/c2009-0-19635-6
Fundamentals of the Theory of Operator Algebras
R. Kadison (1983)
Finite Temperautre Field Theory
J I Kapusta (1989)
The relation between KMS-states for different temperatures [Jä b] Jäkel, C.D., On the relation between KMS states for different temperatures
10.1007/978-3-7091-7526-2
A Course in Mathematical Physics
W. Thirring (1978)
Statistical Mechanics: Rigorous Results
D. Ruelle (1999)
10.1007/3-540-54978-1_14
Nonexistence of scattering theory at finite temperature
H. Narnhofer (1991)
10.1007/BF00703730
Generalized nuclearity conditions and the split property in quantum field theory
D. Buchholz (1991)
10.1007/BF01645628
Remarks on spectra of modular operators of von Neumann algebras
H. Araki (1972)
On the hadronic mass spectrum, Nuovo Cim
R Hagedorn (1967)
10.1080/00927878908823824
Algebras and their automorphism groups
R. D. Pollack (1989)
10.1143/JPSJ.12.570
Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
R. Kubo (1957)
C*-Algebras and Their Automorphisms Groups, Academic Press, London-New YorkTokyo
G. K. Pedersen (1979)
10.1063/1.533089
Two algebraic properties of thermal quantum field theories
C. Jäkel (1999)
10.1103/PhysRevA.26.3646
Adiabatic theorem in quantum statistical mechanics
H. Narnhofer (1982)
10.1007/BF02108335
Perturbative quantum field theory at positive temperatures: An axiomatic approach
O. Steinmann (1995)
10.1142/2364
Thermal field theory
M. Bellac (1996)
10.1007/BF01239029
Convergence of local charges and continuity properties ofW*-inclusions
C. d'Antoni (1987)
10.1142/S0129055X92000145
FROM QUANTUM FIELDS TO LOCAL VON NEUMANN ALGEBRAS
H. Borchers (1992)
Nuclearity and split for thermal quantum field theories
C. Jäkel (1998)
Local Quantum Physics: Fields, Particles, Algebras
R. Haag (1992)
10.1007/BF02096782
Nuclear maps and modular structures II: Applications to quantum field theory
D. Buchholz (1990)
10.1007/BF00398332
Asymptotic triviality of the Møller operators in Galilei invariant quantum field theories
C. Jaekel (1991)
10.1007/978-3-662-09089-3
Operator algebras and quantum statistical mechanics
Ola Bratteli (1979)
Decay of Spatial Correlations in Thermal States
C. Jäkel (1998)
10.1007/BF00750814
On the uniqueness of the equilibrium state for an interacting fermion gas at high temperatures and low densities
C. Jaekel (1995)
10.1007/BF00047144
Quantum theory of collective phenomena
S. Panfil (1991)
10.1007/BF01565114
Particles and propagators in relativistic thermo field theory
J. Bros (1992)
10.1515/9781400884230
PCT, spin and statistics, and all that
R. F. Streater (1964)
Relativistic KMS-condition and Kaellen-Lehmann type representatios of thermal propagators
J. Bros (1995)
The Reeh–Schlieder property for thermal states
C D Jäkel (2000)
10.1142/S0129055X94000390
ENTROPY DENSITY FOR RELATIVISTIC QUANTUM FIELD THEORY
H. Narnhofer (1994)
10.1063/1.1704187
An Algebraic Approach to Quantum Field Theory
R. Haag (1964)
10.1007/BF01609344
Spectra of Liouville operators
G. T. Brinke (1976)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
10.1007/BF01649582
Disjointness of the KMS-states of different temperatures
M. Takesaki (1970)
10.1007/978-3-642-87665-3
Nuclear Locally Convex Spaces
A. Pietsch (1972)
10.1007/BF01646342
On the equilibrium states in quantum statistical mechanics
R. Haag (1967)
10.1007/978-3-319-17545-4_20
On the Hadronic Mass Spectrum
R. Hagedorn (1967)
10.1007/BF01388641
Standard and split inclusions of von Neumann algebras
S. Doplicher (1984)
10.1007/BF01454978
Causal independence and the energy-level density of states in local quantum field theory
D. Buchholz (1986)
10.1063/1.1704063
Von Neumann Algebras of Local Observables for Free Scalar Field
H. Araki (1964)
Cluster properties for modular structures, ESI-preprint, in preparation
C D Jä C ] Jäkel
Thermal Field Theory, Cambridge University
M. Le Bellac (1996)
10.1007/BF01217805
On the existence of equilibrium states in local quantum field theory
D. Buchholz (1989)
Axiomatic analyticity properties and representations of particles in thermal quantum field theory
J. Bros (1996)
Thermodynamisches Gleichgewicht und Energiespektrum in der Quantenfeldtheorie , Dissertation
P Junglas (1987)
10.1016/0550-3213(94)00298-3
Towards a relativistic KMS-condition
J. Bros (1994)
10.1063/1.533208
The Reeh–Schlieder property for thermal field theories
C. Jäkel (2000)
Cluster estimates for modular structures, hep-th/9804017
C D Jä C ] Jäkel
Finite Temperautre Field
J. I. Kapusta (1989)
Ch.G., Real- and imaginary-time field theory at finite temperature and density
N. P. LvW Landsman (1987)
Relativistic KMS-condition and Källén-Lehmann type representation of thermal propagators, published in Proceedings of the 4th Workshop on Thermal Field Theories and their Applications
J. Bros (1995)
10.1017/CBO9780511662218
Operator algebras in dynamical systems
S. Sakai (1991)
10.1016/c2016-0-03431-9
C-Algebras and Their Automorphism Groups
G. K. Pedersen (1979)
Algebraic methods in statistical mechanics and quantum field theory
G. G. Emch (1972)
Some properties of modular conjugation operator of a von Neumann algebra and a noncommutative Radon-Nikodym theorem with a chain rule From quantum fields to local von Neumann algebras
H Araki (1974)
Finite Temperature Field Theory, Cambridge University
J. I. Ka Kapusta (1989)
Advanced Field Theory
H. Umezawa (1995)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar