Online citations, reference lists, and bibliographies.

Künstlicher Glaskörper

Siegfried Mariacher, Peter Szurman
Published 2015 ·
Cite This
Download PDF
Analyze on Scholarcy
Share
ZusammenfassungHintergrundTrotz wesentlicher technologischer Innovationen löst die Pars-plana-Vitrektomie (ppV) in Kombination mit Endotamponaden nicht alle Probleme der Ablatiochirurgie. Auch modernste Tamponadematerialien bieten keine zufriedenstellende Antwort auf Mehrlochsituationen an unterschiedlichen Stellen, die Problematik der proliferativen Vitreoretinopathie (PVR) oder die persistierende Hypotonie. Dabei fällt auf, dass alle verfügbaren Materialien (Gase, Öle, Fluorkarbone) hydrophob sind und damit ihre tamponierenden Eigenschaften über Auftriebsvektor und Oberflächenspannung ausüben. Obwohl dies in der klinischen Anwendung durchaus erfolgreich ist, birgt der hydrophobe Charakter auch deutliche Nachteile, die beispielsweise die PVR-Entwicklung eher fördern als hemmen.ZielsetzungWünschenswert im Sinne einer idealen Tamponade wäre hingegen ein Glaskörperersatz, der dem natürlichen Glaskörper nachempfunden ist, also seine tamponierende Wirkung eher durch Quelldruck und Viskosität ausübt. Moderne Hydrogele zeigen eine gute, Quelldruck-vermittelte Tamponadewirkung bei gleichzeitig sehr guten optischen Eigenschaften. Verschiedene Ansätze erstrecken sich vorwiegend auf den Einsatz quervernetzter semisynthetischer oder vollsynthetischer Polymere. Diese Hydrogele besitzen nicht nur ausgezeichnete refraktive und rheologische Eigenschaften sowie eine hervorragende Biokompatibilität, sondern wirken zusätzlich antiadhäsiv und antimigrativ. Dadurch könnten PVR-Reaktionen alleine durch die Hydrogeltamponade reduziert werden. Die zusätzliche Möglichkeit einer kontrollierten Medikamentenfreisetzung durch entsprechend beladene Hydrogele kann weitere antiproliferative, neuroprotektive oder nutritive Funktionen erfüllen.AbstractBackgroundAlthough numerous advances have been made in technology and techniques of pars plana vitrectomy and tamponades, there are still unsolved issues, such as proliferative vitreoretinopathy (PVR), multiple retinal breaks and persistent hypotonia. All available internal tamponades (e.g, gases, oils and fluorocarbons) are hydrophobic, so they approximate the neurosensory retina to the retinal pigment epithelium due to buoyant force and surface tension. Even though these tamponade materials exhibit various beneficial attributes in the clinical application, the hydrophobic nature has clear disadvantages and compartmentalization and significant incidence of PVR development still occur.Results and conclusionAn ideal vitreous body substitute should mimic the native human vitreous body, in both form and function. Vitreous body substitutes, such as hydrogels fulfill the biophysical needs in a similar manner to the natural vitreous body by providing an internal tamponade effect through swelling pressure and viscosity. New approaches range from cross-linked semisynthetic to synthetic polymers. These hydrogels have a good biocompatibility, optical clarity, a refractive index and rheological properties that are similar to the natural human vitreous body and are able to act as anti-adhesive and anti-migrative agents and can therefore reduce PVR. Furthermore, hydrogels could also serve as controlled-release drug-delivery systems for anti-proliferative, neuroprotective or nutritive drugs.
This paper references
10.1001/archopht.1962.00960030594005
The use of liquid silicone in retinal detachment surgery.
Paul A. Cibis (1962)
10.1055/s-2008-1050122
[Evaluation of the tolerance of the intra-ocular injection of hydroxypropyl methylcellulose in animal experiments].
Yves C A Robert (1988)
10.1106/LVPH-0P1F-V947-RWD1
Synthetic Hydrogels as Carriers in Antisense Therapy: Preliminary Evaluation of an Oligodeoxynucleotide Covalent Conjugate with a Copolymer of 1-Vinyl-2-Pyrrolidinone and 2-Hydroxyethyl Methacrylate
Xia Lou (2001)
10.1001/archopht.1972.01000030542015
Collagen vitreous substitute. I. Experimental study.
Ronald C. Pruett (1972)
10.1016/S0161-6420(88)33136-2
Perisilicone proliferation after vitrectomy for proliferative vitreoretinopathy.
Hilel Lewis (1988)
10.1111/j.1755-3768.1938.tb06267.x
RESULTS OF TREATMENT OF DETACHMENT OF THE RETINA WITH DIATHERMY AND INJECTION OF AIR INTO THE VITREOUS
B. H. O. Rosengren (2009)
10.1016/j.ophtha.2006.07.037
Pars plana vitrectomy, laser retinopexy, and aqueous tamponade for pseudophakic rhegmatogenous retinal detachment.
Vicente Martinez-Castillo (2007)
Crosslinked poly ( 1vinyl2pyrrolidinone ) as a vitreous substitute
Y Hong (1996)
10.1001/archopht.1979.01020020541006
Hyaluronic acid vitreous substitute. A six-year clinical evaluation.
Ronald C. Pruett (1979)
10.1002/jbm.a.31769
In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
K. E. Swindle (2008)
10.1136/bjo.17.12.726
THE EVOLUTION OF IDEAS CONCERNING RETINAL DETACHMENT WITHIN THE LAST FIVE YEARS*
Jules Gonin (1933)
10.1016/S0002-9394(14)74166-2
Low viscosity liquid fluorochemicals in vitreous surgery.
Stanley Chang (1987)
ADVANCEMENTS IN THE DEVELOPMENT OF ARTIFICAL VITREOUS HUMOR UTILIZING POLYACRYLAMIDE COPOLYMERS WITH DISULFIDE CROSSLINKERS
K. E. Swindle (2006)
10.1001/archopht.1989.01070010779046
Giant retinal tears. Surgical techniques and results using perfluorocarbon liquids.
Stanley T. Chang (1989)
10.1023/A:1006016809070
An evaluation of methylated collagen as a substitute for vitreous and aqueous humor
Chanping Liang (2004)
10.1007/BF00183425
The development of pars plana vitrectomy: a personal account.
Robert Machemer (1995)
10.1002/(SICI)1097-4636(19980315)39:4<650::AID-JBM21>3.0.CO;2-9
Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute.
Yi Chun Hong (1998)
Biocompatibility of polyvinylalcohol gel as a vitreous substitute.
Shinji Maruoka (2006)
Zur operativen Behandlung und Heilung der Netzhautablösung
Heinrich Leopold Schoeler (1889)
10.1002/jps.22328
Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery.
Wen-ping Shi (2011)
[Treatment of retinal detachment by circumscribed diathermal coagulation and by scleral depression in the area of tear caused by imbedding of a plastic implant].
E. Custodis (1956)
10.1167/iovs.11-7322
The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute.
Charlotte Schramm (2012)
10.1097/00004397-200001000-00018
Complications of intraocular tamponade: silicone oil versus intraocular gas.
Magdalena G. Krzystolik (2000)
10.1111/j.1755-3768.2007.01149.x
Sodium hyaluronate gels as a drug-release system for corticosteroids: release kinetics and antiproliferative potential for glaucoma surgery.
Martin S. Spitzer (2008)
10.1002/jbm.a.30917
In vitro evaluation of in situ gels as short term vitreous substitutes.
Sana Suri (2006)
10.1001/archopht.1968.00980050122020
Glyceryl methacrylate hydrogel as a vitreous implant. An experimental study.
Salvatore Daniele (1968)
10.1016/S0079-6700(97)00045-2
THE USE OF HYDROPHILIC POLYMERS AS ARTIFICIAL VITREOUS
Traian V Chirila (1998)
10.1016/j.actbio.2012.09.026
Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material.
Yong Tao (2013)
10.1097/00006982-199004000-00012
EVALUATION OF A VISCOELASTIC SOLUTION OF HYDROXYPROPYL METHYLCELLULOSE AS A POTENTIAL VITREOUS SUBSTITUTE
Miguel Fernández Refojo (1990)
10.1167/iovs.13-13120
Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo.
Britta M Rauck (2014)
10.1007/s10856-010-4092-7
PVA/STMP based hydrogels as potential substitutes of human vitreous
Gemma Leone (2010)



Semantic Scholar Logo Some data provided by SemanticScholar