Online citations, reference lists, and bibliographies.
← Back to Search

Algebraic Flux Correction For Nonconforming Finite Element Discretizations Of Scalar Transport Problems

M. Möller
Published 2012 · Mathematics, Computer Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming $$P_1$$ and $$Q_1$$ finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to $$Q_1^\mathrm{nc}$$ approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.
This paper references
10.1145/321296.321305
Iterative Procedures for Nonlinear Integral Equations
D. G. Anderson (1965)
10.1051/M2AN/197307R300331
Conforming and nonconforming finite element methods for solving the stationary Stokes equations I
M. Crouzeix (1973)
Raviart: Conforming and nonconforming fnite element methods for solving the stationary Stokes equations I. Revue française d’automatique, informatique, recherche opérationnelle
M. Crouzeix. P.-A (1973)
Conforming and nonconforming fnite element methods for solving the stationary Stokes equations I. Revue française d'automatique, informatique, recherche opérationnelle
M P Crouzeix (1973)
10.1016/0021-9991(79)90051-2
Fully multidimensional flux-corrected transport algorithms for fluids
S. Zalesak (1979)
ITPACK 2.0 Users Guide. Technical Report CNA150, Center for Numerical Analysis, University of Texas
R. Grimes (1979)
ITPACK 2.0 users guide
R Grimes (1979)
Young: ITPACK 2.0 Users Guide
R Grimes (1979)
Zalesak : Fully multidimensional fluxcorrected transport algorithms for fluids
T. S. (1979)
10.1016/0045-7825(83)90122-6
The group finite element formulation
C. Fletcher (1983)
Fletcher : The group finite element formulation
J. C.A. (1983)
Notes on numerical fluid mechanics
F. Wubs (1985)
10.1002/NUM.1690080202
Simple nonconforming quadrilateral Stokes element
R. Rannacher (1992)
10.1007/978-3-0348-8629-1_3
Scalar Conservation Laws
R. LeVeque (1992)
Turek: A simple nonconforming quadrilateral Stokes element
R Rannacher (1992)
10.1016/0168-9274(93)90129-F
Linearly-implicit Runge-Kutta methods based on implicit Runge-Kutta methods
J. Bruder (1993)
10.1016/0168-9274(93)90096-A
Computational algorithms for aerodynamic analysis and design
A. Jameson (1993)
10.1007/978-3-322-85732-3_18
On ordering strategies in a multigrid algorithm
S. Turek (1993)
10.1137/0733033
High-resolution conservative algorithms for advection in incompressible flow
R. LeVeque (1996)
Parallele Lösung der stationären inkompressiblen Navier–Stokes Gleichungen. Habilitation thesis, Otto-von-Guericke Universität Magdeburg
F Schieweck (1997)
Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen . Otto-von-Guericke Universität Magdeburg
F Schieweck (1997)
Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern. Otto-von-Guericke Universität Magdeburg
V John (1997)
Parallele Lösung der stationären inkompressiblen Navier–Stokes Gleichungen
F Schieweck (1997)
Parallele Lösung der inkompressiblen Navier–Stokes Gleichungen auf adaptiv verfeinerten Gittern
V John (1997)
10.1137/S1064827595293545
Robustness of an Elementwise Parallel Finite Element Method for Convection-Diffusion Problems
W. Layton (1998)
Rabier: Robustness of an elementwise parallel finite element method for convection-diffusion problems
W J Layton (1998)
10.1016/B978-008043944-0/50795-2
Positive finite element schemes based on the flux-corrected transport procedure
D. Kuzmin (2001)
University of Stuttgart
A. Lapin (2001)
University of Stuttgart. Private communication
A Lapin (2001)
Rabier : Robustness of an elementwise parallel finite element method for convectiondiffusion problems
J. M. Maubach (2001)
10.1006/JCPH.2001.6955
Flux correction tools for finite elements
D. Kuzmin (2002)
10.1137/S1064827502407354
P1 Nonconforming Finite Element Multigrid Method for Radiation Transport
K. S. Kang (2003)
10.1002/FLD.493
Multidimensional FEM‐FCT schemes for arbitrary time stepping
D. Kuzmin (2003)
10.1016/J.JCP.2004.01.015
High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter
D. Kuzmin (2004)
10.1016/J.CMA.2004.05.009
High-resolution FEM?FCT schemes for multidimensional conservation laws
D. Kuzmin (2004)
Möller : Algebraic flux correction I . Scalar conservation laws
M. D. Kuzmin (2004)
Flux-corrected transport : principles, algorithms, and applications
D. Kuzʹmin (2005)
10.1007/3-540-27206-2_6
Algebraic Flux Correction I. Scalar Conservation Laws
D. Kuzmin (2005)
On the design of general-purpose flux limiters for implicit FEM with a consistent mass matrix
D. Kuzmin (2005)
Möller: Algebraic flux correction I. Scalar conservation laws
D Kuzmin (2005)
10.1016/j.jcp.2006.03.034
On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection
D. Kuzmin (2006)
10.1145/1362622
Proceedings of the 2007 ACM/IEEE conference on Supercomputing
Becky Verastegui (2007)
10.1016/J.CAM.2007.04.045
On the design of algebraic flux correction schemes for quadratic finite elements
D. Kuzmin (2008)
10.1016/j.camwa.2007.11.008
Multilevel preconditioning of rotated bilinear non-conforming FEM problems
I. Georgiev (2008)
10.1051/M2AN:2008005
AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS
T. Gallouët (2008)
Latché : An unconditionally stable pressure correction scheme for the compressible barotropic Navier - Stokes equations
L. Gastaldo (2008)
Latché: An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations
T Gallouët (2008)
10.1145/1654059.1654078
Implementing sparse matrix-vector multiplication on throughput-oriented processors
N. Bell (2009)
10.1016/j.parco.2008.12.006
Optimization of sparse matrix-vector multiplication on emerging multicore platforms
S. Williams (2009)
10.1016/j.jcp.2008.12.011
Explicit and implicit FEM-FCT algorithms with flux linearization
D. Kuzmin (2009)
10.1016/j.cpc.2009.04.018
HONEI: A collection of libraries for numerical computations targeting multiple processor architectures
D. Dyk (2009)
Implementing sparse matrixvector multiplication on throughputoriented processors
N Bell (2009)
10.1201/B10376-15
Sparse Matrix-Vector Multiplication on Multicore and Accelerators
S. Williams (2010)
10.1201/b10376-8
Sparse Matrix-Vector Multiplication on Multicore and Accelerators
S. Williams (2010)
10.1201/B10376
Scientific Computing with Multicore and Accelerators
J. Kurzak (2010)
Kuzmin : Algebraic flux correction I . Scalar conservation laws
D. (2010)
A guide to numerical methods for transport equations
D Kuzmin (2010)
10.1016/j.parco.2011.08.003
Automatic tuning of the sparse matrix vector product on GPUs based on the ELLR-T approach
F. Vázquez (2012)
ON THE DESIGN OF NON-CONFORMING HIGH-RESOLUTION FINITE ELEMENT SCHEMES
M. Möller (2012)
10.1007/978-94-007-4038-9_6
Algebraic Flux Correction II
D. Kuzmin (2012)
10.1016/j.cam.2011.11.019
Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes
D. Kuzmin (2012)
FeatFlow: http://www.featflow.de, access date: Dec 4
(2012)
Algebraic flux correction for nonconforming finite element discretizations 23
Garzón : Automatic tuning of the sparse matrix vector product on GPUs based on the ELLRT approach
J. J. Fernández
Matthias Möller



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar