# The Hölder Inequality For KMS States

Christian D. Jaekel, Florian Robl

Published 2012 · Physics, Mathematics

We prove a Hölder inequality for KMS States, which generalise a well-known trace-inequality. Our results are based on the theory of non-commutative Lp-spaces.

This paper references

The relativistic KMS condition for the thermal n-point functions of the P(φ)_2 model

Christian D. Jakel (2014)

Some properties of modular conjugation operators of a von Neumann algebra and a non-commutative Radon-Nikodym derivative with a chain rule, Pac

H. Araki (1974)

10.1090/S0002-9939-1961-0132838-8

Functions harmonic in a strip

D. V. Widder (1961)

10.1007/978-3-662-10451-4

Theory of Operator Algebras II

M. Takesaki (1979)

10.1007/BF00714401

On quantum stochastic dynamics and noncommutative
$$\mathbb{L}_p $$
spaces

A. Majewski (1996)

10.2977/prims/1195183577

Positive cones and L//p-spaces for von Neumann algebras

H. Araki (1982)

Operator algebras in dynamical systems : the theory of unbounded derivations in C[*]-algebras

境 正一郎 (1991)

10.1007/BF01614224

Passive states and KMS states for general quantum systems

W. Pusz (1978)

On stochastic dynamics I: Spin systems on a lattice

A. W. Majewski (1995)

10.1007/BF01646342

On the equilibrium states in quantum statistical mechanics

R. Haag (1967)

Positive cones and Lp-spaces for von Neumann algebras, Publ

H. Araki (1982)

10.1007/BF01651541

Stability and equilibrium states

R. Haag (1974)

10.1088/0305-4470/31/8/015

Construction and Ergodicity of Dissipative Dynamics for Quantum Spin Systems on a Lattice

A. Majewski, (1998)

On Quantum Stochastic Dynamics and Noncommutative Lp Spaces

A. Majewski (1996)

The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperature, Helv

J. Fröhlich (1975)

10.1016/0022-1236(81)90065-3

Les espaces Lp d'une algèbre de von Neumann définies par la derivée spatiale

Michel Hilsum (1981)

Definition of Green’s functions for dilute Fermi gases

D. Ruelle (1972)

10.1007/BF01645523

Inequalities for traces on von Neumann algebras

M. B. Ruskai (1972)

10.24033/bsmf.1436

Formes linéaires sur un anneau d'opérateurs

J. Dixmier (1953)

Application of the complex interpolation method to a von Neumann algebra ( Non - commutative L pspace )

H. Kosaki

L-spaces associated with von Neumann algebras, Københavns Universitet

M. Terp (1981)

L-spaces associated with an arbitrary von Neumann algebra, in Algébres d’opératuers et leurs applications en physique mathématique

U. Haagerup (1977)

10.1090/surv/120

Trace ideals and their applications

B. Simon (1979)

10.1016/0022-1236(74)90014-7

Notes on non-commutative integration

Edward Nelson (1974)

10.2307/1969759

Correction to the Paper "A Non-Commutative Extension of Abstract Integration"

I. Segal (1953)

10.2307/1969729

A Non-Commutative Extension of Abstract Integration

I. Segal (1953)

10.1016/0022-1236(84)90025-9

APPLICATIONS OF THE COMPLEX INTERPOLATION METHOD TO A VON NEUMANN ALGEBRA: NON-COMMUTATIVE LP-SPACES

H. Kosaki (1984)

10.1007/978-3-662-09089-3

Operator algebras and quantum statistical mechanics

Ola Bratteli (1979)

Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture

H.

Some properties of modular conjugation operators of a von Neumann algebra and a non - commutative Radon - Nikodym derivative with a chain rule

H. Araki (1974)

10.1017/CBO9780511662218

Operator algebras in dynamical systems

S. Sakai (1991)

10.1007/BF01645678

Golden-Thompson and Peierls-Bogolubov inequalities for a general von Neumann algebra

H. Araki (1973)

Reconstruction of quantum fields from Euclidean Green's functions at arbitrary temperatures

J. Frohlich (1975)

10.1016/c2009-0-22289-6

C*-Algebras and Operator Theory

G. J. Murphy (1990)

On quantum stochastic dynamics and noncommutative

A. Majewski (1996)

10.1063/1.1665679

Analyticity of Green's Functions of Dilute Quantum Gases

D. Ruelle (1971)

10.2140/pjm.1974.50.309

Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule.

H. Araki (1974)

This paper is referenced by