Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Genome Size Of Three Miscanthus Species

A. Rayburn, Joseph Crawford, C. Rayburn, J. Juvik
Published 2008 · Biology

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.
This paper references
Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis.
Jennifer M Nelson (2002)
10.1006/ANBO.1997.0491
Stomatal Characteristics at Different Ploidy Levels inCoffeaL.
M. Mishra (1997)
10.1016/S0961-9534(97)00016-0
Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides
C. V. Beale (1997)
10.1111/J.1439-0523.1991.TB00500.X
Genome Size Variation in Maize Populations Selected for Cold Tolerance
L. M. McMurphy (1991)
10.1614/0043-1745(2003)051[0001:DCAOSP]2.0.CO;2
DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection
M. R. Jeschke (2003)
10.1093/AOB/MCF091
Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR.
T. Hodkinson (2002)
Cytogenetical studies on forage plants. VIII. On 3x and 4x hybrids from Miscanthus sinensis var. condensatus × M. sacchariflorus.
I. Hirayoshi (1960)
10.1093/JHERED/ESG053
Nonadditive changes in genome size during allopolyploidization in the wheat (aegilops-triticum) group.
H. Ozkan (2003)
10.1270/JSBBS1951.5.49
Cytological studieS on forage plants. (III) : Chromosome numbers in Miscanthus.
I. Hirayoshi (1955)
10.2135/CROPSCI2004.2610
Documenting Intraspecfic Genome Size Variation in Soybean
A. L. Rayburn (2004)
10.1016/S0168-1923(99)00042-8
Water use efficiency of C4 perennial grasses in a temperate climate
C. V. Beale (1999)
10.1093/JXB/47.2.267
Leaf photosynthesis in the C4-grass Miscanthus x giganteus, growing in the cool temperate climate of southern England
C. V. Beale (1996)
Miscanthus : European experience with a novel energy crop
I. Lewandowskia
10.1093/OXFORDJOURNALS.JHERED.A107204
ACCESSORY CHROMOSOMES IN MISCANTHUS FLORIDULUS
S. Price (1963)
Comparative studies of genome content.
A. Rayburn (1993)
10.1111/J.1365-2486.2008.01662.X
Meeting US biofuel goals with less land: the potential of Miscanthus
E. Heaton (2008)
10.1002/1097-0320(20000901)41:1<36::AID-CYTO5>3.0.CO;2-O
Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content.
J. Wetzel (2000)
Cytogenetical forage studies on forage plants (VIII): 3x- and 4x-hybrids raized from the cross, Miscanthus sinensis var. condensatus x M. sacchariflorus
I Hirayoshi (1960)
10.2134/AGRONJ2001.9351013X
Performance of 15 Miscanthus genotypes at five sites in Europe
J. Clifton-Brown (2001)
10.1111/J.1439-0523.1994.TB00730.X
Cytogenetic Studies of Different Miscanthus Species with Potential for Agricultural Use
J. Lafferty (1994)
10.1046/J.1095-8339.2002.00089.X
Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America
J. Thomson (2002)
Cytotaxonomy of the genus Miscanthus and its phylogenic status
S Adati (1962)
10.1093/JXB/40.11.1179
Detection of Intraspecific DNA Content Variation in Zea mays L. by Flow Cytometry
A. L. Rayburn (1989)
10.1098/rspb.1972.0042
Nuclear DNA content and minimum generation time in herbaceous plants
M. Bennett (1972)
10.1111/J.1365-2486.2007.01461.X
Prediction of the distribution of Arctic-nesting pink-footed geese under a warmer climate scenario
R. A. Jensen (2007)
Propulsion by hispid flagella.
M. E. Holwill (1967)
10.1016/J.BIOMBIOE.2003.10.005
A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water
E. Heaton (2004)
10.1016/0076-6879(93)24016-N
Comparative studies of genome content.
Rayburn Al (1993)
10.1007/s001220050840
Relationships between nuclear DNA content and seed and leaf size in soybean
J. Chung (1998)
10.1023/A:1022941532372
Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta
A. Aryavand (2004)
10.2135/CROPSCI2005.0163
Genome Size Analysis of Weedy Amaranthus Species
A. L. Rayburn (2005)
10.1111/J.1601-5223.1993.00297.X
Cytogenetic Analysis of Miscanthus‘Giganteus’, an Interspecific Hybrid
I. Linde-Laursen (2004)
10.1038/sj.hdy.6800563
Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions
F. Trucco (2005)
Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the dorsoventral axis. Development 2002;129:4581–9
JM Nelson (2002)
10.1007/s10265-002-0049-3
Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers
T. Hodkinson (2002)
10.1111/J.1744-7348.2006.00079.X
Genome size variation in pumpkin (Cucurbita sp.)
T. Tatum (2006)



This paper is referenced by
10.29350/JOPS.2018.23.3.903
Induction of Genetic Variability by Colchicine Treatment in Stevia rebaudiana Bertoni.
Suhad A. Mahdi (2018)
10.1371/journal.pone.0075672
Genetic Diversity and Population Structure of Miscanthus sinensis Germplasm in China
H. Zhao (2013)
10.1093/jxb/eru511
Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression
L. Clark (2015)
10.7732/KJPR.2012.25.6.745
Biomass and Molecular Characteristics of Multi-tillering Miscanthus Mutants
Geung-Joo Lee (2012)
10.1614/IPSM-D-16-00030.1
Population Genetics and Seed Set in Feral, Ornamental Miscanthus sacchariflorus
E. Mutegi (2016)
10.1007/s00449-011-0592-1
Development of SCAR marker for simultaneous identification of Miscanthus sacchariflorus, M. sinensis and M. x giganteus
Jung Kon Kim (2011)
10.2135/CROPSCI2010.03.0140
Genome Size and Chromosome Analyses in Prairie Cordgrass
Su-min Kim (2010)
10.1007/978-1-4419-5947-8
Genomics of the Saccharinae
A. Paterson (2013)
10.3389/fpls.2013.00107
The potential of C4 grasses for cellulosic biofuel production
Tim van der Weijde (2013)
10.1111/gcbb.12077
Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA
R. Arundale (2014)
10.15666/aeer/1706_1523315244
IMPACT OF DIFFERENT FERTILIZATION REGIMES ON THE BIOMASS PRODUCTION OF PERENNIAL GRASS MISCANTHUS × GIGANTEUS IN SLOVAKIA
M. Kotrla (2019)
10.25560/9630
Characterization of the Plant Cell Wall Response to Isoxaben induced Cell Wall Damage
Lars Kjaer (2011)
PHYTOREMEDIATION OF MILITARY SOIL CONTAMINATED BY METALS AND ORGANOCHLORINE PESTICIDES USING MISCANTHUS
A. Nurzhanova (2017)
10.1007/s12155-011-9146-2
Analysis of Crystallinity Index and Hydrolysis Rates in the Bioenergy Crop Sorghum bicolor
Joshua P. Vandenbrink (2011)
Morphological Adaptations and Membrane Stabilizing Mechanisms of Overwintering Miscanthus (Poaceae)
K. Withers (2015)
10.2174/1874331502014010164
The Technology Used for Synthetic Polyploid Production of Miscanthus as Cellulosic Biofuel Feedstock
O. Melnychuk (2020)
10.1111/gcbb.12098
Miscanthus sacchariflorus – biofuel parent or new weed?
Catherine L. Bonin (2014)
10.11461/JWARAS.57.147
Variation of DNA contents in Miscanthus sinensis and Miscanthus sacchariflorus in Japan
M. Nadir (2014)
10.1016/J.RSER.2017.05.026
Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review
S. Mohapatra (2017)
10.1002/9781118676332.CH4
Miscanthus Genetics and Agronomy for Bioenergy Feedstock
M. Brancourt-Hulmel (2014)
Volunteer Establishment of Miscanthus × giganteus Vegetative Propagules: Implications for Biofuel Production
Shannon Lee Zaret (2013)
10.1111/gcbb.12166
Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones
Katarzyna Głowacka (2015)
10.1515/ABCSB-2015-0013
Miscanthus: Inter- and Intraspecific Genome Size Variation Among M. × Giganteus, M. Sinensis, M. Sacchariflorus Accessions
S. Cichorz (2015)
10.1093/jxb/eru105
Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates
P. Friesen (2014)
10.1111/gcbb.12615
Winter hardiness of Miscanthus (III): Genome‐wide association and genomic prediction for overwintering ability in Miscanthus sinensis
Hongxu Dong (2019)
10.1038/s41598-017-14151-z
Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus
Jiajing Sheng (2017)
10.1111/gcbb.12115
Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China
H. Zhao (2014)
10.1007/s12892-012-0023-0
Miscanthus as a potential bioenergy crop in East Asia
J. Chung (2012)
10.1007/978-3-319-03880-3_5
Sugarcane as a Novel Biofactory: Potentialities and Challenges
F. Gómez-Merino (2014)
10.1111/gcbb.12192
Agronomic factors in the establishment of tetraploid seeded Miscanthus × giganteus
E. Anderson (2015)
Functional studies of lignin biosynthesis genes and putative flowering gene in Miscanthus x giganteus and studies on indolyl glucosinolate biosynthesis and translocation in Brassica oleracea
Hyoung Seok Kim (2010)
10.1007/978-94-007-5500-0
Biotechnology of Neglected and Underutilized Crops
E. C. Torres (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar