Online citations, reference lists, and bibliographies.

A Quasi-brittle Continuum Damage Finite Element Model Of The Human Proximal Femur Based On Element Deletion

R. Hambli
Published 2012 · Mathematics, Computer Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
In this paper, a simple and practical finite element (FE) model coupled to a quasi-brittle damage law to describe the initiation and progressive propagation of multiple cracks based on element deletion is developed to predict the complete force–displacement curve and the fracture pattern of a human proximal femur under quasi-static load. The motivation of this work was to propose a FE model for possible clinical use with a good compromise between complexity and capability of the simulation. The model considers a limited number of parameters that can predict proximal femur fracture in more adequate physical terms than criteria-based fracture models. Based on experimental results, different damage laws for cortical and trabecular bone are proposed to describe inelastic damage accumulation under excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero, leading to the redistribution of the stress state in the vicinity of the damaged zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein [37] (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more physical results concerning the shape of the force–displacement curve (yielding and fracturing) and the profile of the fractured edge.
This paper references
10.1016/J.JBIOMECH.2007.09.009
Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
E. Schileo (2008)
10.1007/s11517-010-0622-1
Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study
Janne E. M. Koivumäki (2010)
10.1201/B14263
Bone mechanics handbook
S. Cowin (2001)
10.1016/J.CMA.2009.02.010
Inhomogeneous, orthotropic material model for the cortical structure of long bones modelled on the basis of clinical CT or density data
Ralf Schneider (2009)
Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties
Z Yosibash (2010)
10.1080/10255840701535965
An anatomical subject-specific FE-model for hip fracture load prediction
L. Duchemin (2008)
10.1002/JBMR.5650110311
The effect of impact direction on the structural capacity of the proximal femur during falls
C. M. Ford (1996)
10.1016/J.JBIOMECH.2005.07.018
Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy.
F. Taddei (2006)
10.1016/0167-6636(95)00018-6
An alternative model for anisotropic elasticity based on fabric tensors
P. Zysset (1995)
10.1016/J.JBIOMECH.2006.08.003
Prediction of strength and strain of the proximal femur by a CT-based finite element method.
M. Bessho (2007)
10.1007/s11517-008-0353-8
Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity
A. Baudoin (2008)
10.2106/00004623-197456050-00012
The Mechanical Properties of Cortical Bone
D. Reilly (1974)
10.1016/j.jbiomech.2008.06.011
Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
Xiang Wang (2008)
Review article. The mechanical properties of cortical bone.
D. Reilly (1974)
Numerical modeling of impact fracture of cortical bone tissue using X-FEM, J. of theoretical and applied mechanics
Abdel-Wahab A A Silberschmidt (2011)
Abaqus 6.9 Documentation, Analysis User's Manual
10.1186/1471-2318-10-12
Hip fracture types in men and women change differently with age
David A. Tanner (2010)
10.1016/J.MEDENGPHY.2005.06.003
Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
L. Peng (2006)
10.1016/0029-5493(81)90007-8
Continuous damage mechanics — A tool to describe phenomena before crack initiation
J. Chaboche (1981)
10.1118/1.1521940
Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions.
S. Prevrhal (2003)
Quantifying anisotropy of trabecular
Z Tabor (2007)
10.1016/J.BONE.2005.10.014
Re-evaluating the toughness of human cortical bone.
Q. Yang (2006)
10.1080/10255849908907982
A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff.
P. Fernandes (1999)
10.1016/S8756-3282(99)00253-7
In vivo diffuse damage in human vertebral trabecular bone.
D. Vashishth (2000)
10.1016/S0021-9290(97)00029-8
Crack growth resistance in cortical bone: concept of microcrack toughening.
D. Vashishth (1997)
10.1007/s007740050072
Fracture simulation of the femoral bone using the finite-element method: How a fracture initiates and proceeds
T. Ota (1999)
On the creep crack-growth prediction by a non local damage
K. Saanouni (1989)
10.1016/S0021-9290(02)00362-7
Equine cortical bone exhibits rising R-curve fracture mechanics.
C. Malik (2003)
10.1016/0045-7949(94)00501-S
Comparison of nonlocal approaches in continuum damage mechanics
de Jhp Henk Vree (1995)
10.1016/j.medengphy.2007.12.001
Constitutive modelling of inelastic behaviour of cortical bone.
A. Natali (2008)
Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties, Phil
Z. Yosibash (2010)
10.1016/J.JBIOMECH.2006.07.023
Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
A. Ural (2007)
10.1016/j.medengphy.2011.10.008
Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.
T. San Antonio (2012)
10.1177/105678959500400303
Mesh-Dependence in Local Approach to Creep Fracture
S. Murakami (1995)
10.1016/S0021-9290(02)00309-3
Concept and development of an orthotropic FE model of the proximal femur.
D. Wirtz (2003)
10.1016/S0021-9290(03)00257-4
Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
Harun H. Bayraktar (2004)
10.1016/0379-0738(94)90265-8
Are hip fractures caused by falling and breaking or breaking and falling? Photoelastic stress analysis.
D. Cotton (1994)
10.1016/0021-9290(94)00156-1
Cyclic mechanical property degradation during fatigue loading of cortical bone.
C. A. Pattin (1996)
10.1098/rsta.2010.0074
Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties
Z. Yosibash (2010)
Med Biol Eng Comput
(2013)
10.1016/S0021-9290(02)00022-2
Determination of orthotropic bone elastic constants using FEA and modal analysis.
W. R. Taylor (2002)
10.1016/j.medengphy.2011.07.011
Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage.
Ridha Hambli (2012)
10.1007/s00223-001-2132-5
Structure Analysis of High Resolution Magnetic Resonance Imaging of the Proximal Femur: In Vitro Correlation with Biomechanical Strength and BMD
T. Link (2002)
10.1016/0020-7683(96)00015-7
From damage to fracture mechanics and conversely: A combined approach
J. Mazars (1995)
10.1016/S0021-9290(02)00319-6
Experimental validation of a microcracking-based toughening mechanism for cortical bone.
D. Vashishth (2003)
10.1016/j.jbiomech.2008.10.039
Validation of subject-specific automated p-FE analysis of the proximal femur.
N. Trabelsi (2009)
10.1016/J.JBIOMECH.2004.05.013
Trabecular bone microdamage and microstructural stresses under uniaxial compression.
S. Nagaraja (2005)
10.1016/S1350-4533(03)00030-4
Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions.
T. S. Kaneko (2003)
10.1016/S1350-4533(01)00045-5
Improved prediction of proximal femoral fracture load using nonlinear finite element models.
J. Keyak (2001)
Accuracy of subject specific finite-element models of long bones from CT data: an in vitro study
S Martelli (2005)
Post failure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method
X Wang (2008)
Numerical modelling of impact fracture of cortical bone tissue using X-FEM
A. Abdel-Wahab (2011)
10.1016/j.jbiomech.2009.01.020
Numerical modeling of bone tissue adaptation--a hierarchical approach for bone apparent density and trabecular structure.
P. Coelho (2009)
10.1016/j.bone.2008.01.017
Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
J. A. MacNeil (2008)
10.1016/S0021-9290(03)00169-6
Tensile damage and its effects on cortical bone.
S. Kotha (2003)
10.1016/j.jmbbm.2011.03.002
Apparent damage accumulation in cancellous bone using neural networks.
R. Hambli (2011)
In vivo diffuse damage in human trabecular bone
J. VashishthD. (2000)
Ph
李幼升 (1989)
10.1016/0021-9290(88)90200-X
Some viscoplastic characteristics of bovine and human cortical bone.
M. Fondrk (1988)
10.1016/8756-3282(95)00370-3
Aging and matrix microdamage accumulation in human compact bone.
M. Schaffler (1995)
10.1007/s10439-007-9393-8
Micromechanics-Based Conversion of CT Data into Anisotropic Elasticity Tensors, Applied to FE Simulations of a Mandible
C. Hellmich (2007)
10.1016/S0021-9290(01)00178-6
Anisotropic bone remodelling model based on a continuum damage-repair theory.
M. Doblaré (2002)
10.1016/J.JBIOMECH.2005.10.027
Comparison of micro-level and continuum-level voxel models of the proximal femur.
E. Verhulp (2006)
10.1080/09243860500095471
Microcracks colocalize within highly mineralized regions of cortical bone tissue.
Nicholas H. Wasserman (2005)
10.1007/s10237-008-0125-2
A three-dimensional elastic plastic damage constitutive law for bone tissue
D. García (2009)
10.1016/J.JBIOMECH.2007.06.017
Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
Z. Yosibash (2007)
10.1016/S0021-9290(01)00192-0
Trabecular bone adaptation with an orthotropic material model.
Z. Miller (2002)
10.1016/J.JBIOMECH.2007.02.010
Subject-specific finite element models can accurately predict strain levels in long bones.
E. Schileo (2007)
Bones: structure and mechanics Continuum damage mechanics: a tool to describe phenomena before crack initiation
Jd Currey (1981)
from gray - level images
F. Taddei (2006)
Fracture simulation of femoral bone using finiteelement method: How a fracture initiates and proceeds, Bone and Min
T. Ota (1999)
10.1115/1.2895413
Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis.
J. C. Lotz (1991)
10.1007/s10439-010-0196-y
Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip
D. Dragomir-Daescu (2010)
10.5075/epfl-thesis-1252
A constitutive law for trabecular bone
P. Zysset (1994)
10.1002/CNM.1413
Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation
Ridha Hambli (2011)
10.1016/0021-9290(90)90030-7
Physical characteristics affecting the tensile failure properties of compact bone.
J. Currey (1990)
10.1016/J.BONE.2006.10.022
Quantifying anisotropy of trabecular bone from gray-level images.
Z. Tabor (2007)
10.1016/J.BONE.2006.06.018
Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture.
X. Cheng (2007)
strength at the distal radius can be estimated from high - resolution peripheral quantitative computed tomography and the finite element method
J Mazars (1996)
parison of nonlocal approaches in continuum damage mechanics
Vree JHP (1995)
10.1115/1.2895412
Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
J. C. Lotz (1991)
10.1007/BF01774015
Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture
J. C. Lotz (2005)
10.1016/S0142-1123(02)00165-2
A crack growth model for the simulation of fatigue in bone
D. Taylor (2003)
10.1115/1.2913335
Experimental validation of a finite element model of a human cadaveric tibia.
H. Gray (2008)
10.1016/j.bone.2012.01.012
Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
Janne E. M. Koivumäki (2012)
10.3166/ejcm.18.33-41
Femoral neck fracture prediction by anisotropic yield criteria
M. Tellache (2009)
10.1016/0021-9290(75)90075-5
The elastic and ultimate properties of compact bone tissue.
D. Reilly (1975)
10.11501/3163670
Fracture simulation of the femoral bone using finite element method : how a fracture initiates and proceeds
大田 豊承 (1998)
10.1115/1.2835084
A damage model for nonlinear tensile behavior of cortical bone.
M. Fondrk (1999)
10.1016/S1350-4533(03)00081-X
Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load.
J. Keyak (2003)
10.1016/S0021-9290(99)00099-8
Femoral strength is better predicted by finite element models than QCT and DXA.
D. Cody (1999)
10.1007/BF02344721
Evaluation of achievable registration accuracy of the femur during minimally invasive total hip replacement
F. Popescu (2006)
10.1115/1.4004180
Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
N. Trabelsi (2011)
10.1002/JOR.1100170308
Mechanical behavior of human trabecular bone after overloading
T. M. Keaveny (1999)
strength at the distal radius can be estimated from high - resolution peripheral quantitative computed tomography and the finite element method
A. MacNeilJ. (2008)
In vivo diffuse damage in human trabecular
D. J. Vashishth (2000)
10.1002/(SICI)1097-4636(20000305)49:3<380::AID-JBM11>3.0.CO;2-W
Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft.
C. U. Brown (2000)
10.1016/j.jbiomech.2011.01.018
Damage accumulation in vertebral trabecular bone depends on loading mode and direction.
U. Wolfram (2011)
10.1016/j.medengphy.2009.03.004
Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position.
A. Bonnet (2009)
10.1115/1.2800862
Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
M. Fondrk (1999)
10.1016/J.MEDENGPHY.2006.10.002
Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
V. Báča (2007)
10.1016/j.medengphy.2010.01.004
Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur.
Haisheng Yang (2010)
In vivo diffuse damage in human trabecular bone
DJ Vashishth (2000)
Damage mechanics of human cortical bone
G. P. Parsamian (2002)
10.1016/j.jbiomech.2011.05.038
The human proximal femur behaves linearly elastic up to failure under physiological loading conditions.
M. Juszczyk (2011)
On the creep crack-growth prediction by a non local damage formulation
K. Saanouni (1989)
10.1016/j.medengphy.2007.12.009
Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
V. Báča (2008)
10.1115/1.3225775
A Continuous Damage Mechanics Model for Ductile Fracture
J. Lemaitre (1985)
10.1016/j.jbiomech.2009.09.045
Simulation of orthotropic microstructure remodelling of cancellous bone.
P. Kowalczyk (2010)
10.1016/0141-5425(90)90022-F
Automated three-dimensional finite element modelling of bone: a new method.
J. Keyak (1990)
10.1097/00003086-199210000-00034
Proximal femoral bone density and its correlation to fracture load and hip-screw penetration load.
M. D. Smith (1992)
10.1115/1.2796045
The relationship between loading conditions and fracture patterns of the proximal femur.
K. Yang (1994)
Curnier A (2009) A threedimensional elastic plastic damage constitutive law for bone tissue
D Garcia (2009)
10.1007/s11517-006-0104-7
3D femoral neck anteversion measurements based on the posterior femoral plane in ORTHODOC® system
Y. Lee (2006)



This paper is referenced by
10.1007/s10439-013-0864-9
A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation
R. Hambli (2013)
10.1007/s00226-019-01142-8
Numerical modelling of timber and timber joints: computational aspects
C. Sandhaas (2019)
EXPERIMENTAL AND COMPUTATIONAL ANALYSIS OF FRACTURE LOAD AND PATTERN OF HUMAN FEMUR USING COHESIVE ZONE MODEL
Alavi Fatemeh (2016)
10.1002/cnm.2962
Assessment of mechanical properties of human head tissues for trauma modelling.
Estívaliz Lozano-Mínguez (2018)
10.1016/J.IJPLAS.2018.10.001
On modelling the constitutive and damage behaviour of highly non-linear bio-composites – Mesh sensitivity of the viscoplastic-damage law computations
C. G. Skamniotis (2019)
10.4028/www.scientific.net/AMR.845.324
Linear Elastic Analysis of Bovine Cortical Bone under Compression Loading
Theng Pin Ng (2013)
10.3390/ma13010106
Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis—A Survey
Amadeus C S de Alcântara (2019)
10.1016/j.jbiomech.2013.10.033
Specimen-specific modeling of hip fracture pattern and repair.
Azhar A. Ali (2014)
10.1016/J.CMA.2019.05.032
Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory
T. P. G. Thamburaja (2019)
Development of a computational approach to assess hip fracture and repair: Considerations of intersubject and surgical alignment variability
A. Ali (2013)
10.1016/B978-0-12-803581-8.04017-0
Finite Element Simulation of Fracture Profile of Bone Material: A Case of Study Applied to Human Femur Specimen
Awad Bettamer (2014)
10.1002/cnm.3188
An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
Benjamin Werner (2019)
10.1080/21681163.2015.1079505
Using visual image measurements to validate a novel finite element model of crack propagation and fracture patterns of proximal femur
Awad Bettamer (2017)
10.1016/j.cma.2020.113139
A 3D meshfree crack propagation algorithm for the dynamic fracture in arbitrary curved shell
Yuxiang Peng (2020)
10.21823/2311-2905-2019-25-1-113-121
Mathematical Modeling of the “Bone-Fixator” System during the Treatment of Intertrochanteric Fractures
V. E. Dubrov (2019)
10.1002/cnm.3211
A novel phase field method for modeling the fracture of long bones.
Rilin Shen (2019)
10.1016/J.IRBM.2013.01.011
Combined finite element model of human proximal femur behaviour considering remodeling and fracture
R. Hambli (2013)
Carácter interdisciplinario de la modelación computacional en la solución
Raide Alfonso González Carbonell (2014)
10.1016/J.PROSTR.2018.12.105
Numerical and analytical model of long tubular bones with anisotropic distribution of elastic properties
S. M. Bosiakov (2018)
10.1016/j.bone.2013.06.028
Micro-CT finite element model and experimental validation of trabecular bone damage and fracture.
R. Hambli (2013)
10.1016/j.jmbbm.2016.10.014
Assessment of compressive failure process of cortical bone materials using damage-based model.
Theng Pin Ng (2017)
10.1016/j.jbiomech.2020.109844
Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone.
Marzieh Ovesy (2020)
10.1002/jor.24383
Previous Damage Accumulation Can Influence Femoral Fracture Strength: A Finite Element Study
I. Haider (2019)
10.1098/rsfs.2015.0055
Modelling of bone fracture and strength at different length scales: a review
F. Sabet (2016)
10.1515/bmt-2018-0049
A comparative study of tapped and untapped pilot holes for bicortical orthopedic screws – 3D finite element analysis with an experimental test
H. Ketata (2019)
10.1016/j.ijmecsci.2019.105213
Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling
R. Belda (2020)
10.1016/j.medengphy.2018.07.002
How a pilot hole size affects osteosynthesis at the screw-bone interface under immediate loading.
F. Affes (2018)
10.1016/j.jbiomech.2018.08.003
Linear and nonlinear analyses of femoral fractures: Computational/experimental study.
Majid Mirzaei (2018)
10.1016/j.medengphy.2018.02.008
Femoral fracture load and fracture pattern is accurately predicted using a gradient-enhanced quasi-brittle finite element model.
I. Haider (2018)
10.3389/fphys.2018.00545
Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone
F. Levrero-Florencio (2018)
10.1002/ar.23796
Young's Modulus and Load Complexity: Modeling Their Effects on Proximal Femur Strain.
Adam D Sylvester (2018)
prediction of proximal femur fracture : finite element modeling based on mechanical damage and experimental validation
A. Bettamer (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar