Online citations, reference lists, and bibliographies.

Particle-Size-Grouping Model Of Precipitation Kinetics In Microalloyed Steels

K. Xu, B. Thomas
Published 2011 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.
This paper references
Europhys. Lett
S Muïler (2001)
Phase Transformations, Ed
H. I. Aaronson (1970)
ISIJ Int
J Y Choi (2002)
Mater. Sci. Forum
R Radis (2010)
The Theory of Transformation in Metals and Alloys, Part I
J. W. Christian (1975)
Model . Simul
M. P. Gururajan
Ind
H. F. Beeghly (1942)
J. Chem. Phys
D Turnbull (1949)
Burgers: Physica
(1934)
Acta Mater
J Lepinoux (2009)
Role of structural impurities in phase transformations, Impurities and imperfections
D Turnbull (1955)
10.1088/0965-0393/6/4/007
Analysis of aluminium nitride precipitation proceeding concurrently with recrystallization in low-carbon steel
N. Zolotorevsky (1998)
Levich: Physicochemical hydrodynamics, Prentice-Hall, Inc
V G. (1962)
On the static theory of crystallization of metals
A N Kolmogorov
Mater
J. Svoboda (2004)
Ind. Eng. Chem
H F Beeghly (1942)
Scand. J. Metall
M Hallberg (2005)
10.1103/PHYSREVB.80.134118
Formation ofY2O3nanoclusters in nanostructured ferritic alloys during isothermal and anisothermal heat treatment: A kinetic Monte Carlo study
C. Hin (2009)
10.1007/S11661-000-0218-8
Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels
L. Cheng (2000)
J. Appl. Phys
C Zener (1949)
Phys
C. Hin (2009)
and G
K. Higashitani (1983)
Christian: The Theory of Transformation in Metals and Alloys, Part I
(1975)
10.1016/J.JNUCMAT.2010.04.017
Phase-field simulation of nucleation and growth of M23C6 carbide and ferromagnetic phases during creep deformation in Type 304 steel
Yuhki Tsukada (2010)
10.1103/PHYSREVB.82.174111
In situ determination of aging precipitation in deformed Fe-Cu and Fe-Cu-B-N alloys by time-resolved small-angle neutron scattering
S. M. He (2010)
10.5406/j.ctvpj7hjj.15
What are “ A ” and “ B ” ?
A. News
Ber
L. Kampmann (1970)
and T
P. A. Manohar (1998)
and S
T. Nakaoka (2001)
10.4028/www.scientific.net/MSF.636-637.605
Precipitation Kinetics of Aluminium Nitride in Austenite in Microalloyed HSLA Steels
Rene Radis (2010)
10.1016/S0031-8914(34)80244-3
On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium
W. G. Burgers
10.1038/048049a0
Lehrbuch der Allgemeinen Chemie
J. Rodger (1893)
10.1007/BF02665494
Calculation of the Ti(CyN1−y)−Ti4C2S2−MnS-austenite equilibrium in Ti-bearing steels
W. Liu (1989)
10.1016/j.actamat.2009.04.056
Phase field study of precipitate growth: Effect of misfit strain and interface curvature
Rajdip Mukherjee (2009)
MATERIALS TRANSACTIONS A
a volume
J. Phys. Chem. Solids
I M Lifshitz (1961)
Impurities and imperfections, Seminar Proceedings
D. Turnbull (1955)
Scripta Metall
J. Miyake (1991)
10.1021/j100839a029
THE NIOBIUM—NIOBIUM CARBIDE SYSTEM1
E. K. Storms (1960)
10.2355/ISIJINTERNATIONAL.39.426
Agglomeration and Flotation of Alumina Clusters in Molten Steel
H. Tozawa (1999)
J. Appl. Phys
J H Van Der (1963)
Ber. Bunsenges. Phys. Chem
L Kampmann (1970)
Mater. Sci. Eng. A
J Svoboda (2004)
Mater. Sci. Eng. A
E Hozeschnik (2004)
Philos
J. Lepinoux (2010)
and W
L. Zhan (2003)
Proc
T. Gladman (1966)
10.5860/choice.35-2725
The Physical Metallurgy of Microalloyed Steels
T. Gladman (1997)
J. Colloid Interface Sci
F Gelbard (1980)
Effect of Boron, Niobium and Titanium on Grain Growth in Ultra High Purity 18% Cr Ferritic Stainless Steel
E E Kashif (2004)
Nucleation and growth kinetics of inclusions during liquid steel deoxidation, Ironmaking and Steelmaking
L Zhang (2003)
Met
A. LE Bon (1975)
J. Iron Steel Inst
F Vodopivec (1973)
Theorie der alterung von niederschlägen durch umloesen (Ostwald-Reifung), Zeitschrift Zeitschr
C. Wagner (1961)
10.1103/PhysRevB.54.8899
Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities.
Krishnamachari (1996)
10.1016/J.MSEA.2004.06.018
Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I. – Theory
J. Svoboda (2004)
10.1179/030192303225001766
Nucleation and growth kinetics of inclusions during liquid steel deoxidation
L. Zhang (2003)
10.1179/030634575790444919
Recrystallization and Precipitation during Hot Working of a Nb-Bearing HSLA Steel
A. Bon (1975)
10.1034/j.1600-0692.2002.310208.x
Modeling micro-inclusion growth and separation ingas-stirred ladles
Dong‐Yuan Sheng (2002)
10.2355/ISIJINTERNATIONAL.44.1093
The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels
Y. Li (2004)
10.1016/J.SCRIPTAMAT.2003.08.013
Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb-Ti bearing HSLA steels
H. J. Jun (2003)
10.1002/chin.198551011
LATTICE AND GRAIN-BOUNDARY DIFFUSION OF NIOBIUM IN IRON
J. Geise (1985)
and H
J. Zhan (2004)
Metall. Mater. Trans. A
L M Cheng (2000)
and M
R. L. Klueh (2008)
10.1111/J.1600-0692.2005.00716.X
Process model of inclusion separation in a stirred steel ladle
M. Hallberg (2005)
10.1063/1.1750380
Kinetics of Phase Change. I General Theory
M. Avrami (1939)
ISIJ Int
Y Li (2004)
Z. Kristallogr
H Shoji (1931)
Mater
E. Hozeschnik (2004)
J. Colloid Interface Sci
J J Wu (1988)
Int. Mater. Rev
F G Wilson (1988)
Analysis of aluminum nitride precipitation proceeding concurrenly with recrystallization in low-carbon steel, Modelling and Simulation in
N Y Zolotorevsky (1998)
J. Nucl. Mater
Y Tsukada (2010)
NIST-JANAF Thermochemical Tables Fourth Edition
M. W. Chase (1998)
10.1063/1.3129038
Homogeneous Nucleation Theory
F. Abraham (1974)
10.1016/0001-8686(75)85001-9
Ostwald ripening of precipitates
M. Kahlweit (1975)
10.2355/tetsutohagane1955.80.1_54
Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in Austenite
N. Yoshinaga (1994)
Model. Simul. Mater. Sci. Eng
R Radis (2010)
Scand
D. Sheng (2002)
Phys
J.M.B. Krishnamachari (1996)
Journal of Chemical Engineering of Japan--その誕生から現在まで (〔化学工学協会〕創立50周年記念増刊号) -- (展開する国際的活動)
白戸 紋平 (1986)
C. Zener: Trans. Am. Inst. Miner. Metall. Soc
(1948)
10.1007/BF00737515
Quantitative aspects of precipitation at grain boundaries in an austenitic stainless steel
Alan R. Jones (1976)
Trans. Am. Inst. Miner. Metall. Soc
(1948)
Mater
R. Radis (2010)
10.1524/zkri.1931.77.1.381
Geometrische Beziehungen unter den Strukturen der Modifikationen einer Substanz
Hikoroku Shôji
10.1016/0021-9797(80)90394-X
Sectional representations for simulating aerosol dynamics
F. Gelbard (1980)
10.2355/ISIJINTERNATIONAL.48.891
A CFD-based Nucleation-growth-removal Model for Inclusion Behavior in a Gas-agitated Ladle during Molten Steel Deoxidation
You-Jong Kwon (2008)
10.1080/14786435.2010.484403
Comparing kinetic Monte Carlo simulations with cluster dynamics: What can we learn about precipitation? Application to AlZr alloys
J. Lepinoux (2010)
ISIJ Int
H Tozawa (1999)
and C
H. J. Jun (2003)
and T
N. Ga (1997)
and Y
Y. Miki (1997)
and W
J. Y. Park (2000)
ISIJ Int
N Gao (1997)
Adv
M. Kahlweit (1975)
Adv. Colloid Interface Sci
M Kahlweit (1975)
Surf. Coat. Technol
L R Zhao (2005)
10.1016/J.ACTAMAT.2005.01.038
Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics
E. Clouet (2005)
10.1016/J.MSEA.2004.06.016
Modelling of kinetics in multi-component multi-phase systems with spherical precipitates
E. Kozeschnik (2004)
J. Chem. Eng. Jpn
K Higashitani (1983)
J. Phys. D: Appl. Phys
N Zhang (2007)
Metall
Y. Miki (1999)
and R
M. Hallberg (2005)
and P
F. Perrard (2007)
and G
E. Clouet (2005)
ISIJ Int
E E Kashif (2004)
Metall
L. M. Cheng (2000)
and M
R. C. Hudd (1971)
Scand
M. Hallberg (2005)
and L
D. Sheng (2002)
10.1088/0965-0393/18/1/015011
Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries
Ernst Kozeschnik (2010)
10.2355/tetsutohagane1955.68.10_1489
Lattice Diffusion in Iron-A Review
H. Oikawa (1982)
and T
H. Tozawa (1999)
J. Colloid Interface Sci
S K Friedlander (1966)
and K
L. Zhang (2000)
Metall. Mater. Trans. B
L Zhang (2000)
ISIJ Int
J Y Park (2000)
J. Fluid Mech
P G Saffman (1956)
Metall. Mater. Trans. A
K Xu (2011)
10.1007/BF02667586
Nucleation kinetics of Ti carbonitride in microalloyed austenite
W. Liu (1989)
10.2355/ISIJINTERNATIONAL.38.913
Five Decades of the Zener Equation
P. Manohar (1998)
10.1063/1.1729050
Crystal Interfaces. Part I. Semi‐Infinite Crystals
J. H. Merwe (1963)
Science Report Tohoku Imperial Univ
Z Nishiyama (1936)
Impurities and Imperfections
D Turnbull (1955)
Physicochemical Hydrodynamics, Prentice-Hall, Inc
V. G. Levich (1962)
On the Theory of Precipitation II, Berichte der Bunsen-Gesellschaft Physikalische Chemie
L Kampmann (1970)
Mater. Sci. Technol
B Dutta (1987)
ISIJ Int
P A Manohar (1998)
Tetsu-to-Hagane
H Oikawa (1982)
Metall
L. Zhang (2000)
10.1016/J.ACTAMAT.2006.10.003
Modelling the precipitation of NbC on dislocations in α-Fe
F. Perrard (2007)
10.1007/S11661-010-0428-7
Equilibrium Model of Precipitation in Microalloyed Steels
Kun Xu (2011)
10.1016/0001-6160(81)90075-4
Precipitation kinetics and solute strengthening in high temperature austenites containing Al and N
J. Michel (1981)
10.1063/1.1747055
Rate of Nucleation in Condensed Systems
D. Turnbull (1949)
Z. Metallkd
J Geise (1985)
Technical note: On the influence of hot deformation of low-carbon steel by rolling on the precipitation of aluminium nitride
F Vodopivec (1973)
ISIJ Int
S C Park (2004)
ISIJ Int
N Yoshinaga (1994)
Metall
B. J. Lee (2001)
Materials informatics for the design of novel coating, Surface and Coating Technology
L R Zhao (2005)
Scripta Metall. Mater
J Miyake (1991)
10.1515/9783111548050-024
M
M. Sankar (1824)
Zeitschrift Zeitschr
C. Wagner (1961)
10.1016/J.SURFCOAT.2005.08.097
Materials informatics for the design of novel coatings
L. Zhao (2005)
10.1007/S11663-000-0044-9
Fluid flow and inclusion removal in continuous casting tundish
L. Zhang (2000)
Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford
M.F.H.J. Frost (1982)
Acta Mater
E Clouet (2005)
Mater
H. C. Kang (2004)
Phys. Rev. B
E Clouet (2004)
10.1088/0965-0393/18/5/055003
Kinetics of AlN precipitation in microalloyed steel
Rene Radis (2010)
Transaction Metal Carbides and Nitrides
7. L.E. Toth (1971)
Mater. Sci. Technol
W J Liu (1989)
and K
H. C. Kang (2004)
and K
E. E. Kashif (2004)
Model. Simul. Mater. Sci. Eng
E Kozeschnik (2010)
10.1103/PhysRevB.69.064109
Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: From kinetic Monte Carlo simulations to classical theory
E. Clouet (2004)
10.2355/ISIJINTERNATIONAL.42.889
Precipitation and Recrystallization Behavior in Extra Low Carbon Steels
J. Choi (2002)
Kale: J. Iron Steel Inst
R C Hudd (1971)
Izv
A. N. Kolmogorov (1937)
Ashby: Deformation-Mechanism Maps
H J Frost (1982)
Metall
W. J. Liu (1989)
and H
J. Y. Choi (2002)
Europhys
S. Müller (2001)
Mater
W. J. Liu (1989)
Mater. Res. Soc. Symp. Proc.
S. Higgins (2006)
10.1016/0021-9797(66)90073-7
The self-preserving particle size distribution for coagulation by brownian motion☆
S. Friedlander (1966)
10.1063/1.1698258
Theory of Growth of Spherical Precipitates from Solid Solution
C. Zener (1949)
10.2355/ISIJINTERNATIONAL.44.1568
Effects of boron, niobium and titanium on grain growth in ultra high purity 18% Cr ferritic stainless steel
E. El-Kashif (2004)
10.1021/i560102a016
Determination of Combined Nitrogen in Steel. A Rapid Method
S. Tomkins (1942)
Trans. Am. Soc. Metall
W C Leslie (1954)
and T
Y. Li (2004)
10.1016/0022-3697(61)90054-3
The kinetics of precipitation from supersaturated solid solutions
I. M. Lifshitz (1961)
Calculation of the Ti(C y N 1-y )-Ti 4 C 2 S 2 -MnS-Austenite equilibrium in Tibearing steels
W J Liu (1989)
J. Mater. Sci
A R Jones (1976)
and O
N. Yoshinaga (1994)
and Z
N. Zhan (2007)
Phase Transformations, edited by H
H. I. Aaronson (1970)
10.1179/imr.1988.33.1.221
Aluminium nitride in steel
F. G. Wilson (1988)
10.1038/268298a0
Physicochemical hydrodynamics
S. Bruckenstein (1977)
10.1136/bjo.46.11.704
A and V
R. Stephenson (1962)
10.2355/ISIJINTERNATIONAL.44.1629
Numerical Modeling of Nucleation and Growth of Inclusions in Molten Steel Based on Mean Processing Parameters
J. Zhang (2004)
10.1007/S11663-999-0025-6
Modeling of inclusion removal in a tundish
Y. Miki (1999)
10.1016/0956-716X(91)90379-F
Electrical resistivity and the Gibbs-Thomson equation
J. Miyake (1991)
10.1017/CBO9781139207249.009
I and J
William M. Marsden (2012)
Modell
N. Y. Zolotorevsky (1998)
Precipitation Process in Steels, Special Report No
R. G. Baker (1959)
Phys
E. Clouet (2004)
ISIJ Int
J Zhang (2004)
Phys. Rev. B
C Hin (2009)
Metall. Trans. A
W J Liu (1989)
and Y
N. Y. Zolotorevsky (1998)
10.1515/9783111576855-015
J
Seguin Hen (1824)
On the static theory of crystallization of metals, Izv
A. N. Kolmogorov (1937)
10.1088/0022-3727/40/8/027
A collision model for a large number of particles with significantly different sizes
N. Zhang (2007)
10.1179/mst.1989.5.1.8
Characterisation of critical nucleus/matrix interface: application to Cu–Co alloys and microalloyed austenite
W. Liu (1989)
10.2355/ISIJINTERNATIONAL.44.1016
Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Solidification: Experiments and Thermodynamic Calculations
Sang-Chae Park (2004)
10.1515/9783111548050-035
Z
Axel M. Gressner (2012)
10.2355/ISIJINTERNATIONAL.41.1103
Particle-size-grouping method of inclusion agglomeration and its application to water model experiments
T. Nakaoka (2001)
10.1016/0021-9797(88)90255-X
A discrete-sectional solution to the aerosol dynamic equation
J. J. Wu (1988)
10.1007/BF02674014
A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures
W. Liu (1988)
10.2355/ISIJINTERNATIONAL.40.1253
Effect of Ti Addition on the Potency of MnS for Ferrite Nucleation in C–Mn–V Steels
J. Park (2000)
ISIJ Int
T Nakaoka (2001)
Acta Metall
M Hillert (1965)
A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride
R C Hudd (1971)
Phys. Rev. B
S M He (2010)
ISIJ Int
Y J Kwon (2008)
Metall. Mater. Trans. A
B J Lee (2001)
Zwaag:Phys
S. M. He (2010)
Toth: Transaction Metal Carbides and Nitrides
(1971)
Titovets: Model. Simul. Mater. Sci. Eng
N Y Zolotorevsky (1998)
10.1007/S11661-001-0033-X
Thermodynamic assessment of the Fe-Nb-Ti-C-N system
Byeong-Joo Lee (2001)
10.1209/EPL/I2001-00377-0
Prediction of alloy precipitate shapes from first principles
S. Mueller (2001)
10.1016/J.JNUCMAT.2008.04.002
Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening
R. Klueh (2008)
Model of inclusion removal during RH degassing of steel
Y. Miki (1997)
Proc. Roy. Soc. London Ser. A
T Gladman (1966)
Rossard: Met. Sci
A Le Bon (1975)
and K
U. Lindbor (1968)
J. Phys. Chem
E K Strorms (1960)
J. Nucl. Mater
R L Klueh (2008)
Acta Mater
R Mukherjee (2009)
Z. Phys. Chem
M Smoluchowski (1917)
Acta Mater
F Perrard (2007)
10.1016/J.ACTAMAT.2008.10.048
Modelling precipitation in binary alloys by cluster dynamics
J. Lepinoux (2009)
10.1016/0001-6160(65)90200-2
On the theory of normal and abnormal grain growth
M. Hillert (1965)
10.1515/zpch-1918-9209
Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen
M. Smoluchowski (1918)
Mater
R. Kampmann (1987)
Izv. Akad. Nauk SSSR, Ser. Fiz
A N Kolmogorov (1937)
Surf
L. R. Zhao (2012)
and C
S. K. Friedlande (1966)
Merwe: J
J. H. Van De (1963)
Ironmaking Steelmaking
L Zhang (2003)
J. Phys. Chem. Ref. Data
N W Chase (1998)
Mater. Sci. Forum
H C Kang (2004)
Numerical modeling of nucleation and growth of inclusions in molten steel bases on mean processing parameters, IJIJ international
J Zhang (2004)
10.2355/isijinternational.34.24
Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in Austenite
N. Yoshinaga (1994)
10.1179/mst.1987.3.3.197
Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite
B. Dutta (1987)
10.1016/0001-8686(80)80003-0
Nucleation in solids: The induction and steady state effects
K. C. Russell (1980)
10.1515/9783111576855-016
K
Martin P. Catherwood (1824)
10.1002/crat.2170300802
Interpretation of Periodic Precipitation Pattern Formation by the Concept of Quantum Mechanics
J. Stávek (1995)
10.1016/J.SCRIPTAMAT.2009.09.030
Precipitate growth with composition-dependent diffusivity: Comparison between theory and phase field simulations
Rajdip Mukherjee (2010)
10.1107/S002188980601301X
A small‐angle neutron scattering study of fine‐scale NbC precipitation kinetics in the α‐Fe–Nb–C system
F. Perrard (2006)
10.1017/S0022112056000020
On the collision of drops in turbulent clouds
P. G. Saffman (1956)
and M
J. Stáve (1995)
Adv. Colloid Interface Sci
K C Russell (1980)
Metall. Mater. Trans. B
Y Miki (1999)
Jonsson: Scand. J. Metall
D Sheng (2002)
10.1098/rspa.1966.0208
On the theory of the effect of precipitate particles on grain growth in metals
T. Gladman (1966)
and R
K. Xu (2011)
Cryst. Res. Technol
J Sta´sta´vek (1995)
Adv
K. C. Russell (1980)
Mechanisms of diffusional growth of precipitate crystals, Phase Transformations, edited by H
H. I. Aaronson (1970)
Acta Metall
J P Michel (1981)
10.1016/B978-0-12-384931-1.00018-0
R
J. Lackie (2013)
10.1252/jcej.16.299
TURBULENT COAGULATION OF PARTICLES DISPERSED IN A VISCOUS FLUID
K. Higashitani (1983)
Transactions of the American Society for Metals
T. C. DuMond (1961)
Grains, Phases, and Interfaces an Interpretation of Microstructure
C. Smith (1948)
A Collision Model for the Growth and Separation of Deoxidation Products
U. Lindborg (1968)
Precipitation Process in Steels The Iron and Steel Institute
R G Baker (1959)
Int
F. G. Wilson (1988)
Philos. Mag
J Lepinoux (2010)
Abraham: Homogeneous Nucleation Theory
(1974)
Scripta Mater
R Mukherjee (2010)
J. Chem. Phys
M Avrami (1939)
J. Appl. Crystallogr
F Perrard (2006)
Bull. Acad. Sci. USSR, Phys. Ser
Fiz (1937)
Mater
B. Dutta (1987)
Mechanisms of diffusional growth of precipitate crystals, Phase Transformations
H I Aaronson (1970)
Reaction kinetics in progresses of nucleation and growth, Trans
W. A. Johnson (1939)
Geometric relationship between the structures of the modifications of a substance
H Shoji (1931)
10.1177/016059768100500308
“Model”
S. Papson (1981)
10.2307/807379
A Fourth Edition
G. Horn (1945)
10.2355/isijinternational.37.596
Influence of AlN Precipitation on Thermodynamic Parameters in C-Al-V-N Microalloyed Steels
N. Gao (1997)
10.4028/www.scientific.net/MSF.449-452.49
Quantitative Analysis of Precipitation Behavior in Ferrite of V Added Microalloyed Steel
H. Kang (2004)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar