Online citations, reference lists, and bibliographies.

Modeling Of The Prediction Of Densification Behavior Of Powder Metallurgy Al–Cu–Mg/B4C Composites Using Artificial Neural Networks

Temel Varol, Aykut Çanakçı, Sukru Ozsahin
Published 2014 · Materials Science
Cite This
Download PDF
Analyze on Scholarcy
Share
Al–Cu–Mg/B4Cp metal matrix composites with reinforcement of up to 20 wt% were produced using the powder metallurgy technique. The effects of reinforcement ratio, reinforcement size, milling time, and compact pressure on the density and porosity of the composites reinforced with 0, 5, 10, and 20 wt% B4C particles were studied. Moreover, an artificial neural network model has been developed for the prediction of the effects of the manufacturing parameters on the density and porosity of powder metallurgy Al–Cu–Mg/B4Cp composites. This model can be used for predicting the densification behavior of Al–Cu–Mg/B4Cp composites produced under reinforcement of different sizes and amounts with various milling times and compact pressures. The mean absolute percentage error for the predicted values did not exceed 1.6%.
This paper references
Composites A 30
J. A. Lee (1999)
10.1016/J.CERAMINT.2013.06.091
Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling
Mohammad Reza Akbarpour (2014)
Composites A 43
X. Yang (2012)
10.1016/j.scriptamat.2004.03.002
Direct synthesis of MgCNi3 by mechanical alloying
Hao Jing Wang (2004)
10.1016/S1359-835X(99)00027-5
The use of neural networks for the prediction of fatigue lives of composite materials
Jonathan A. Lee (1999)
10.3390/mca11020163
Modelling of Microhardness Values by Means of Artificial Neural Networks of Al/Sicp Metal Matrix Composite Material Couples Processed with Diffusion Method
M. Murat Taskin (2006)
10.1007/S10853-011-5579-4
Effects of particle plasticity characteristics on local interface stress in particle reinforced composite during uniaxial tension
Hm Xu (2011)
10.1007/s40195-013-0159-z
Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt.%Cu alloy
S. Devaraj (2013)
10.1016/S0927-0256(03)00106-X
Software products for modelling and simulation in materials science
Savko Malinov (2003)
Acta Metall
S. Devaraj (2013)
10.1007/s40195-014-0053-3
Wear Behavior of PTFE–Hydroxyapatite Composite Fabricated by Hot-Press Sintering Process
Hamid Reza Zafarani (2014)
Mater
H. R. Hafizpour (2009)
Comput
S. Malinov (2001)
Scr
H. Wang (2004)
10.1515/secm-2012-0012
The tribological properties of A356-SiCp metal-matrix composites fabricated by thixomoulding technique
Dursun Özyürek (2012)
Sci
H. M. Xu (2011)
10.1016/j.matdes.2008.05.019
Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys
Mehmet Sirac Ozerdem (2009)
Math
M. Taskin (2006)
Neural Comput
M. Zakeri (2012)
10.1016/j.jmatprotec.2005.06.037
The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite
Naiqin Zhao (2005)
10.1007/s40195-012-0147-8
Improvement of a high velocity compaction technique for iron powder
Dil Faraz Khan (2013)
504
C. H. Fan (2010)
10.1515/9783111548050-024
M
M. Sankar (1824)
10.1016/J.MSEA.2008.05.004
Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying
Nader Parvin (2008)
Mater
Z. R. Hesabi (2007)
10.1016/j.jmatprotec.2008.02.066
Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network
Adel Mahamood Hassan (2009)
10.1007/s00521-012-1012-4
Prediction of the mean grain size of MA-synthesized nanopowders by artificial neural networks
Mohammad Zakeri (2012)
12 The comparison of measured values and ANN values for the porosity: a training data set, b testing data set
Fig
10.1016/j.matdes.2008.07.052
Analysis of the effect of reinforcement particles on the compressibility of Al-SiC composite powders using a neural network model
H. R. Hafizpour (2009)
10.1016/S0927-0256(01)00160-4
Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network
Savko Malinov (2000)
10.1016/j.msea.2006.11.129
An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling
Z. R. Hesabi (2007)
Mater
M. S. Ozerdem (2009)
Sci
İ. Yildiz (2013)
10.1016/j.compscitech.2006.07.026
Prediction on wear properties of polymer composites with artificial neural networks
Zhenyu Jiang (2007)
10.1016/J.COMPOSITESA.2011.12.010
Numerical study of the effects of reinforcement/matrix interphase on stress-strain behavior of YAl2 particle reinforced MgLiAl composites
Xue Yang (2012)
Powder Technol
A. Canakci (2012)
10.1177/003754976500400110
Process
W. L. Godfrey (1965)
Acta Metall
H. R. Zafarani (2014)
Comput
S. Malinov (2003)
Compos
Z. Jiang (2007)
Ceram
M. R. Akbarpour (2014)
10.1016/J.JALLCOM.2010.06.012
Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al–Zn–Mg–Cu alloy
Changling Fan (2010)
10.1016/J.POWTEC.2012.04.045
Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks
Aykut Çanakçı (2012)
10.1016/S0921-5093(02)00246-0
Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders
J. B. Fogagnolo (2003)
10.1016/j.jmatprotec.2008.01.041
Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis
N. Muthukrishnan (2009)
10.1016/J.APT.2009.12.003
Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations
H. R. Hafizpour (2010)
10.1007/S10853-010-5156-2
Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites
Aykut Çanakçı (2011)
10.1515/secm-2012-0010
Characterization and brazing of sintered Ni-Al-Co powder mixtures containing intermetallics
İsmail Yildiz (2013)
Sci
N. Altinkok (2005)
BioResourches 6
I. Yıldırım (2011)
10.1016/J.JMATPROTEC.2007.07.038
The compressibility of Cu/SiCp powder prepared by high-energy ball milling
Keke Gan (2008)
10.1007/s10853-005-0689-5
Use of artificial neural network for prediction of physical properties and tensile strengths in particle reinforced alüminum matrix composites
Necat Altinkok (2005)
Sci
D. Ozyurek (2015)
Acta Metall
Y. Xu (2013)
10.1515/secm-2011-0122
The effect of mechanical alloying on Al2O3 distribution and properties of Al2O3 particle reinforced Al-MMCs
Aykut Çanakçı (2012)
10.1007/S12613-011-0465-2
Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration
Yeming Fan (2011)
Mater
J. B. Fogagnolo (2003)
Adv
H. R. Hafizpour (2010)
Sci
A. Canakci (2012)
Mater
N. Parvin (2008)
Int
Y. M. Fan (2011)
Sci
A. Canakci (2011)
Acta Metall
D. F. Khan (2013)



This paper is referenced by
10.1016/J.POWTEC.2019.05.042
Analysis of cold compaction for Fe-C, Fe-C-Cu powder design based on constitutive relation and artificial neural networks
Da Seul Shin (2019)
10.1007/s40195-015-0315-8
Microstructure and Dynamic Compression Properties of PM Al6061/B4C Composite
Hongsheng Chen (2015)
10.1016/J.MATDES.2015.12.147
The effect of SiCp size on high temperature damping capacity and dynamic Young's modulus of hot-pressed AlSi-SiCp MMCs
S. Madeira (2016)
10.1016/J.POWTEC.2018.11.010
Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening
Isabel Cristina Márquez Feijoo (2019)
10.1016/J.POWTEC.2015.07.029
Complex effects of alloy composition and porosity on the phase transformations and mechanical properties of powder metallurgy steels
Jooyoung Park (2015)
10.1007/S40195-018-0795-4
Effect of Sintering Temperature and Heating Rate on Crystallite Size, Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering
Kumar Singh Lavish (2018)
10.1016/J.POWTEC.2018.01.028
The effect of TiB2 content on the properties of AA6005/TiB2 nanocomposites fabricated by mechanical alloying method
N. Abu-warda (2018)
10.1007/s41779-017-0046-6
An analysis of end milling performance on B4C particle reinforced aluminum composite
G. S. Samy (2017)
10.1016/J.IJFATIGUE.2019.02.043
Fatigue damage effect approach by artificial neural network
Moises Jimenez-Martinez (2019)
10.1016/J.TRIBOINT.2015.04.034
Effect of nanosilica additive particles on both friction and wear performance of mild steel/CuSn/SnBi multimaterial system
H. Ait-Sadi (2015)
10.1007/s40195-017-0568-5
Tribological Characterization of Hybrid Metal Matrix Composites Processed by Powder Metallurgy
Mustafa Megahed (2017)
10.1016/J.MSEA.2016.01.114
Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling
Kamyar Shirvanimoghaddam (2016)
10.1007/s40195-015-0327-4
Post-treatment Process of Semi-solid Powder Rolling
Xia Luo (2015)
10.1007/s12613-019-1724-x
A novel approach to predict green density by high-velocity compaction based on the materials informatics method
Kai-qi Zhang (2019)
10.1016/J.MATDES.2017.05.027
Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys
Guangxu Liu (2017)
10.1088/2053-1591/AAFBE2
Rice husk ash reinforced aluminium matrix composites: fabrication, characterization, statistical analysis and artificial neural network modelling
Mohd Bilal Naim Shaikh (2019)
10.1007/s40195-017-0565-8
A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects
Renguo Guan (2017)
10.1080/02726351.2017.1381658
Artificial neural network analysis of the effect of matrix size and milling time on the properties of flake Al-Cu-Mg alloy particles synthesized by ball milling
Temel Varol (2019)
10.1007/S00170-019-04019-Z
Hierarchical artificial neural network modelling of aluminum alloy properties used in die casting
C. Munõz-Ibañez (2019)
10.1108/ILT-08-2017-0248
Tribological properties and mechanism of the bilayer iron based powder metallurgy materials
Guotao Zhang (2018)
10.13189/ujms.2018.060504
The Effect of Milling Time on the Mechanical Properties of ZA27/Al 2 O 3 Nanocomposites
Müslim Çelebi (2018)
10.1016/J.JALLCOM.2018.11.162
Detection of crack development with Al/SiCp using tensile with online acoustic emission
C. Mahil Loo Christopher (2019)
10.1016/j.matpr.2019.11.273
Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering
Chander Prakash (2020)
10.1557/JMR.2017.95
The microstructure and mechanical properties of Al2024-SiCp composite fabricated by powder thixoforming
Pubo Li (2017)
10.1016/j.jmrt.2019.09.012
The microstructure and wear behaviour of garnet particle reinforced Al matrix composites
Sanjeev Kumar (2019)
10.1007/s12588-016-9163-2
Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN
Rasmi Ranjan Behera (2016)
10.1007/S40430-015-0483-5
Tensile strength prediction of dissimilar friction stir-welded AA6351–AA5083 using artificial neural network technique
Ramaswamy Palanivel (2016)
10.1007/978-981-13-0411-8_65
Wear Behavior of ZTA Reinforced Iron Matrix Composites
Lei Fan (2018)
10.1007/S00170-016-8795-X
Bayesian network approach for ceramic shell deformation fault diagnosis in the investment casting process
Sun Jin (2017)
10.1080/02726351.2017.1369475
The wear behavior of Al/(Al2O3 + SiC + C) hybrid composites fabricated stir casting assisted squeeze
Chiranjeev S. Kalra (2019)
Semantic Scholar Logo Some data provided by SemanticScholar