Online citations, reference lists, and bibliographies.
← Back to Search

Dihydroorotate-dependent Superoxide Production In Rat Brain And Liver. A Function Of The Primary Dehydrogenase.

H. J. Forman, J. Kennedy
Published 1976 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Dihydroorotate dehydrogenase in rat brain mitochondria is capable of producing superoxide. The presence of a superoxide dismutase activity in brain mitochondria, similar to that found in mitochondria from chicken liver, suggests that production of superoxide may occur in vivo. Formation of superoxide is not dependent upon reduction of cytochrome b, rather, superoxide production is competitive with cytochrome b reduction. Phenazine methosulfate apparently competes with both oxygen (superoxide production) and cytochrome b as an electron carrier but does not enhance reduction of dichlorophenolindophenol or cytochrome c.
This paper references
10.1016/s0021-9258(18)55540-x
Intracellular distribution of diphosphopyridine nucleotide-cytochrome c reductase and cytochrome c oxidase in mammalian brain.
Theodore M. Brody (1952)
Respiratory enzymes in oxidative phosphorylation. III. The steady state.
B. Chance (1955)
10.1016/0006-3002(62)91134-4
Alterations of rat-tissue coenzyme Q (ubiquinone) levels by various treatments.
R. E. Beyer (1962)
10.1016/0076-6879(67)10036-0
[33] Preparation and assay of phosphorylating submitochondrial particles: Particles from rat liver prepared by drastic sonication
C. T. Gregg (1967)
10.1139/O68-164
Mammalian dehydroorotate-ubiquinone reductase complex.
R. Miller (1968)
10.1016/0006-291X(69)90287-3
The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen.
V. Massey (1969)
10.1016/s0021-9258(18)63505-7
The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers.
J. McCord (1970)
10.1016/0003-2697(71)90370-8
Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.
C. Beauchamp (1971)
10.1016/0014-5793(72)80272-2
The nature of electron transfer and energy coupling reactions
B. Chance (1972)
10.1016/s0021-9258(19)44679-6
The generation of superoxide radical during the autoxidation of hemoglobin.
H. Misra (1972)
10.1016/S0006-291X(72)80218-3
The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.
M. Nishikimi (1972)
10.1016/s0021-9258(19)45228-9
The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.
H. Misra (1972)
Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization.
R. Weisiger (1973)
10.1016/0014-5793(74)80818-5
Oxygen radicals and hydrogen peroxide in rat brain mitochondria
M.Catia Sorgato (1974)
10.1016/0006-291X(74)90418-5
Role of superoxide radical in mitochondrial dehydrogenase reactions.
H. Forman (1974)
10.1016/0014-5793(74)80281-4
Superoxide radicals as precursors of mitochondrial hydrogen peroxide
G. Loschen (1974)
10.1016/0014-5793(75)80964-1
Intramitochondrial localization and release of rat liver superoxide dismutase
Leonid F. Panchenko (1975)
10.1021/bi00680a010
The role of superoxide radical in the autoxidation of cytochrome c.
R. Cassell (1975)
10.1016/s0021-9258(19)41421-x
Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid.
H. J. Forman (1975)



This paper is referenced by
10.1101/2021.07.01.450791
Identifying Site-specific Superoxide and Hydrogen Peroxide Production Rates from the Mitochondrial Electron Transport System Using a Computational Strategy
Quynh V. Duong (2021)
10.3390/antiox9101013
Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue
G. Egea (2020)
10.1016/j.freeradbiomed.2020.11.021
The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature.
T. J. Costa (2020)
10.1155/2020/5021694
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention
T. Cunha-Oliveira (2020)
10.1002/cbic.202000661
Hydrogen Sulfide Oxidation by Sulfide Quinone Oxidoreductase
Aaron P. Landry (2020)
10.1155/2019/6175804
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells
A. Snezhkina (2019)
10.1016/B978-0-12-804273-1.00021-1
Peroxynitrite Formation and Detection in Living Cells
N. Rios (2017)
10.1007/978-3-319-30705-3_3
Manganese Superoxide Dismutase (MnSOD) and Its Importance in Mitochondrial Function and Cancer
Aaron K. Holley (2016)
10.1007/978-3-319-42139-1_1
Mitochondrial ROS and Apoptosis
H. El-Osta (2016)
10.1155/2016/8254942
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies
D. Muntean (2016)
Modulatory Effect of Fenugreek Loaded PLGA Nanoparticles on Lipofuscinogenesis in Pancreas of Alloxan Induced Diabetic Mice
(2016)
10.1016/j.biocel.2015.01.021
Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production?☆
Eliška Holzerová (2015)
10.1039/c4mb00571f
Cysteine-mediated redox signalling in the mitochondria.
D. Bak (2015)
Développement de nouvelles stratégies analytiques pour la caractérisation moléculaire des états d'oxydation à l'échelle protéomique
Shakir Shakir (2015)
10.15407/UBJ87.06.019
[REPROGRAMMING OF MITOCHONDRIAL ENERGY METABOLISM IN MALIGNANT NEOPLASMS].
A. Kaplia (2015)
10.1201/B19420-3
Metabolism of Superoxide Radicals and Hydrogen Peroxide in Mitochondria
H Susana Marinho (2015)
10.1016/j.tibs.2013.09.001
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
R. Mailloux (2013)
10.1016/j.mito.2013.01.008
Mitochondrial metabolism of reactive oxygen species.
P. Venditti (2013)
10.1016/j.mito.2012.07.104
Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect?
Aaron K. Holley (2013)
10.1134/S0006297913130087
Mitochondrial production of reactive oxygen species
V. G. Grivennikova (2013)
10.1007/978-1-4419-9663-3_29
The Role of Mitochondrial Oxidative Stress and ATP Depletion in the Pathology of Manganese Toxicity
T. Gunter (2012)
10.1016/j.tem.2012.04.004
Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
R. Mailloux (2012)
10.1007/978-1-60761-956-7_27
Models of Mitochondrial Oxidative Stress
E. Cadenas (2011)
10.3390/ijms12107114
Manganese Superoxide Dismutase: Guardian of the Powerhouse
Aaron K. Holley (2011)
10.1016/j.freeradbiomed.2011.06.022
Uncoupling proteins and the control of mitochondrial reactive oxygen species production.
R. Mailloux (2011)
Caractérisation biochimique et fonctionnelle de glutathion-S-transferases (GSTs) chez Phanerochaete chrysosporium
A. Ngadin (2011)
10.1016/j.mito.2010.06.003
Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS.
Aaron K. Holley (2010)
10.1007/978-90-481-3465-6_8
Mitochondria, oxidative damage and longevity: What can comparative biology teach Us?
Y. Shi (2010)
10.1016/S0065-2296(10)52006-8
Chapter 6 Reactive Oxygen Species in Phanerochaete chrysosporium Relationship Between Extracellular Oxidative and Intracellular Antioxidant Systems
M. Morel (2009)
10.1002/DDR.20342
Lactic acid in cancer and mitochondrial disease
K. Steliou (2009)
10.1042/BJ20081386
How mitochondria produce reactive oxygen species
M. Murphy (2009)
10.1007/978-0-387-69945-5_8
Formation of Reactive Oxygen Species in Mitochondria
J. Turrens (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar