Online citations, reference lists, and bibliographies.
← Back to Search

Characterization Of The Dimerization Process Of HIV‐1 Reverse Transcriptase Heterodimer Using Intrinsic Protein Fluorescence

G. Divita, T. Restle, R. Goody
Published 1993 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Intrinsic protein fluorescence has been used to study dimerization of the HIV‐1 reverse transcriptase (RT). We observed a 25% increase of the tryptophan fluorescence of the enzyme during dissociation of the subunits induced by the addition of acetonitrile. Upon reassociation of the separated subunits, the original fluorescence emission of the heterodimer is restored. A two‐state transition model for the RT dimerization process in which the dimers are in equilibrium with folded monomers is proposed. The free energy of dissociation was determined to be 12.2 (± 0.2) kcal/mol. In the absence of Mg2+ ions a decrease of this value was observed, whereas the addition of a synthetic primer/template (18/36mer) results in an increase of dimer stability. Analyzing the effect of Mg2+ on the establishment of the binding equilibrium, a dramatic effect with a 100‐fold acceleration of the association by the divalent ion was observed.
This paper references
Martin
Folks J E T M Lightfoote. M M . Cohgan (1986)
10.1016/0079-6107(87)90011-3
Folding and association of proteins.
R. Jaenicke (1982)
Biochemistry 30
J Remstem (1991)
10.1126/SCIENCE.2418504
Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV.
F. di Marzo Veronese (1986)
m: Prmciples of Fluorescence Spectroscoopy
J. R. Lackowtcz (1983)
Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli.
B. Müller (1989)
10.5860/choice.44-3876
Principles of fluorescence spectroscopy
J. R. Lakowicz (1983)
10.1016/0003-2697(76)90527-3
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
M. M. Bradford (1976)
10.1021/BI00229A017
Interaction of fluorescently labeled dideoxynucleotides with HIV-1 reverse transcriptase.
B. Mueller (1991)
10.1021/BI00114A015
Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding.
S. Becerra (1991)
) m: Protein Structure, a
(1990)
10.1111/j.1751-1097.1973.tb06422.x
FLUORESCENCE AND THE LOCATION OF TRYPTOPHAN RESIDUES IN PROTEIN MOLECULES
E. Burstein (1973)
10.1021/BI00150A015
Conformational changes of HIV reverse transcriptase subunits on formation of the heterodimer: correlation with kcat and Km.
S. F. Anderson (1992)
10.1128/JVI.60.2.771-775.1986
Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus.
M. Lightfoote (1986)
m: Protein Structure, a Practical Approach (Creighton
R Jaemcke (1990)
Initial binding of 2'-deoxynucleoside 5'-triphosphates to human immunodeficiency virus type 1 reverse transcriptase.
G. Painter (1991)
Methods Enzymol
C. N. Pace (1986)
10.1126/SCIENCE.1377403
Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor.
L. A. Kohlstaedt (1992)
Photothem. Photobiol 18
N S Vedenkma (1973)
10.1016/0076-6879(86)31045-0
Determination and analysis of urea and guanidine hydrochloride denaturation curves.
C. Pace (1986)
Structure-function relationships of HIV-1 reverse transcriptase determined using monoclonal antibodies.
T. Restle (1992)
Biochemistry 31.82218228 Batllon
R. Jaenicke (1987)
10.1126/SCIENCE.1707186
Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase.
J. F. Davies (1991)
Interaction of tRNALys with the p66/p66 form of HIV-1 reverse transcriptase stimulates DNA polymerase and ribonuclease H activities.
M. Andréola (1992)
10.1021/BI00425A002
HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis.
D. M. Lowe (1988)
10.1016/0014-5793(92)80172-D
RNase H activity of HIV reverse transcriptases is confined exclusively to the dimeric forms
T. Restle (1992)
Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention.
T. Restle (1990)



This paper is referenced by
10.1046/J.1432-1327.2001.01939.X
Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase.
J. F. Cabodevilla (2001)
10.1128/JVI.79.16.10247-10257.2005
Mutations That Abrogate Human Immunodeficiency Virus Type 1 Reverse Transcriptase Dimerization Affect Maturation of the Reverse Transcriptase Heterodimer
J. Wapling (2005)
10.2174/1568026043388600
TSAO compounds: the comprehensive story of a unique family of HIV-1 specific inhibitors of reverse transcriptase.
M. Camarasa (2004)
10.1016/j.jmb.2011.12.034
Nucleocapsid protein annealing of a primer-template enhances (+)-strand DNA synthesis and fidelity by HIV-1 reverse transcriptase.
Jiae Kim (2012)
10.1097/00042560-199601010-00003
Recombinant human immunodeficiency virus type 1 reverse transcriptase is heterogeneous.
J. E. Wilson (1996)
10.1074/JBC.M104342200
Functional Characterization of Chimeric Reverse Transcriptases with Polypeptide Subunits of Highly Divergent HIV-1 Group M and O Strains*
L. Menéndez-Arias (2001)
Binding of the Nonnucleoside Reverse Transcriptase Inhibitor Efavirenz to HIV-1 Reverse Transcriptase Monomers and Dimers
Valerie A. Braz (2009)
10.1006/ABIO.2001.5045
An integrated system to study multiply substituted human immunodeficiency virus type 1 reverse transcriptase.
J. Boretto (2001)
10.1016/0958-1669(94)90051-5
Site-directed mutagenesis of HIV reverse transcriptase to probe enzyme processivity and drug binding.
W. Beard (1994)
10.1016/S0022-2836(02)01433-X
Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization.
G. Tachedjian (2003)
10.1006/JMBI.1994.0042
Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process.
G. Divita (1995)
10.1016/j.jviromet.2008.06.021
MAPPIT (MAmmalian Protein-Protein Interaction Trap) as a tool to study HIV reverse transcriptase dimerization in intact human cells.
E. Pattyn (2008)
10.1021/JM001095I
Identification of a putative binding site for [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase.
F. Rodríguez-Barrios (2001)
10.1021/bi101504w
Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation.
M. Tsiang (2011)
10.1017/erm.2012.10
Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity.
M. C. Smith (2012)
10.1002/cbic.201500668
Inhibition of HIV‐1 Reverse Transcriptase Dimerization by Small Molecules
C. Tintori (2016)
10.3390/v8100260
Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability
R. London (2016)
10.1021/acs.biochem.7b00005
The β1'-β2' Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft.
A. Pandey (2017)
10.1021/bi902116z
Homodimerization of the p51 subunit of HIV-1 reverse transcriptase.
X. Zheng (2010)
10.1124/MOL.62.2.398
Destabilization of the HIV-1 reverse transcriptase dimer upon interaction with N-acyl hydrazone inhibitors.
N. Sluis-Cremer (2002)
10.1177/095632020501600301
TSAO Derivatives the First Non-Peptide Inhibitors of HIV-1 RT Dimerization
M. Camarasa (2005)
Étude d'une nouvelle classe d'inhibiteurs de la rétrotranscriptase et de l'intégrase du virus de l'immunodéficience humaine de type-1 (VIH-1).
J. Didierjean (2005)
10.1371/journal.pcbi.1003103
Gag-Pol Processing during HIV-1 Virion Maturation: A Systems Biology Approach
Balázs Könnyü (2013)
10.1002/cbic.200700669
Small Molecule Inhibitors Targeting HIV‐1 Reverse Transcriptase Dimerization
Dina Grohmann (2008)
10.3390/biom3040889
Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors
Grant Schauer (2013)
10.1016/0168-1656(95)00016-J
Dissociation and unfolding of jack bean urease studied by fluorescence emission spectroscopy
S. Omar (1995)
10.1515/BCHM3.1996.377.2.71
Cystatins in health and disease.
Y. Henskens (1996)
10.1023/A:1012278308154
Insertion of a peptide from MuLV RT into the connection subdomain of HIV-1 RT results in a functionally active chimeric enzyme in monomeric conformation
P. K. Pandey (2004)
10.1007/B135974_19
Human Immunodeficiency Virus Reverse Transcriptase
M. Wendeler (2009)
10.1007/978-1-4614-7291-9_8
Targeting Small Molecules and Peptides to the p66-p51 Reverse Transcriptase Interface
Daouda Mousatpha Abba Moussa (2013)
10.1002/PRO.5560030903
Human immunodeficiency virus‐1 reverse transcriptase heterodimer stability
J. Lebowitz (1994)
10.1074/jbc.M109.040121
Affinities between the Binding Partners of the HIV-1 Integrase Dimer-Lens Epithelium-derived Growth Factor (IN Dimer-LEDGF) Complex
M. Tsiang (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar