Online citations, reference lists, and bibliographies.
← Back to Search

A Continuous Wave Technique For The Measurement Of The Elastic Properties Of Cortical Bone.

R. B. Ashman, S. Cowin, W. Van Buskirk, J. Rice
Published 1984 · Engineering, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
A continuous wave technique is described for measuring the nine independent orthotropic elastic coefficients from a single cubic specimen. The side dimensions of this cubic specimen are on the order of 5 mm. Because of the small size of the specimen, the spatial resolution of material inhomogeneity using this technique is quite good. Although it is possible to apply this technique to any elastic material such as woods or metals, the elastic properties of human and canine cortical femora are presented here. The orthotropic elastic coefficients and the variation of these coefficients are presented as a function of anatomical position.
This paper references
10.1007/BF00855455
Physiological significance of changes in bone volume associated with deformation
K. A. Yanson (1974)
10.1016/0021-9290(75)90075-5
The elastic and ultimate properties of compact bone tissue.
D. Reilly (1975)
10.1016/0021-9290(68)90022-5
The distribution of breaking strength in the human femur shaft.
E. Amtmann (1968)
10.1115/1.3138262
Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone.
W. Van Buskirk (1981)
10.1016/0021-9290(76)90118-4
Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry.
H. S. Yoon (1976)
10.1016/0021-9290(69)90036-0
The mechanical consequences of variation in the mineral content of bone.
J. Currey (1969)
10.1121/1.381962
Elastic waves in rods and clad rods
R. N. Thurston (1978)
10.1115/1.3426244
Determination of Elastic Constants for Human Femurs
V. G. Lappi (1979)
10.1109/ULTSYM.1979.197229
Temperature Dependence of the Ultrasonic Velocities in Bone
H. S. Yoon (1979)
10.1097/00003086-197003000-00034
Ultrasonics and selected physical properties of bone.
W. Abendschein (1970)
10.3233/BIR-1964-2101
Three analogies to explain the mechanical properties of bone
J. Currey (1964)
10.1121/1.1910965
Wave Propagation in Anisotropic Bars of Rectangular Cross Section. Part I. Longitudinal Wave Propagation
N. J. Nigro (1968)
10.1016/0021-9290(76)90089-0
Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness.
H. S. Yoon (1976)
10.1109/TBME.1970.4502706
Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones.
S. Lang (1970)
10.1016/0141-5425(82)90022-X
Ultrasonic analysis of the Youngs modulus of cortical bone.
W. Bonfield (1982)
10.3109/17453676608989401
Factors affecting the determination of the physical properties of femoral cortical bone.
E. Sedlin (1966)
10.1038/283106A0
Anisotropy of Young's modulus of bone
J. Katz (1980)
10.1016/0021-9290(82)90036-7
On the modelling of long bones in structural analyses.
R. Huiskes (1982)



This paper is referenced by
10.1007/s00226-016-0851-z
Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques
E. V. Bachtiar (2016)
10.17169/REFUBIUM-14009
Multidimensional coupling in a human knee model
O. Sander (2008)
10.1016/J.JBIOMECH.2006.10.032
Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
H. Follet (2007)
Eine Theorie für Mehrkomponentenkontinua und ihre Transformation in eine Stabtheorie mit Anwendung auf den menschlichen Oberschenkelknochen
A. Kayser (2000)
10.1016/S0169-2607(99)00007-3
Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis.
D. Testi (1999)
10.1023/A:1026748913553
Review Micromechanical testing of bone trabeculae - potentials and limitations
E. Lucchinetti (2000)
10.1016/J.RBMRET.2005.07.002
Apport des ultrasons dans l'exploration du tissu osseux
P. Laugier (2005)
10.1016/S0301-5629(97)00023-9
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).
S. Mehta (1997)
10.1016/8756-3282(95)00148-7
The anisotropy of osteonal bone and its ultrastructural implications.
C. Turner (1995)
10.1142/S0218396X12500178
SIMULATION OF A MIXTURE MODEL FOR ULTRASOUND PROPAGATION THROUGH CANCELLOUS BONE USING STAGGERED-GRID FINITE DIFFERENCES
Robert P. Gilbert (2013)
10.1016/j.ultrasmedbio.2013.06.005
Radial anatomic variation of ultrasonic velocity in human cortical bone.
Vincent Mathieu (2013)
10.1007/978-4-431-54073-1_2
Mechanics of Biosolids and Computational Analysis
M. Tanaka (2012)
Improving the model reduction method based on multilevel substructuring for structural dynamic analysis
Cheolgyu Hyun Advisor (2017)
10.1007/978-3-642-80440-3_19
Quantitative Ultrasound for Assessing Bone Properties
D. Hans (1998)
10.1155/2018/6271898
A Review of Pediatric Lower Extremity Data for Pedestrian Numerical Modeling: Injury Epidemiology, Anatomy, Anthropometry, Structural, and Mechanical Properties
Yunzhu Meng (2018)
Caractérisation ultrasonore et vibroacoustique de la santé mécanique des os humains
E. Ogam (2007)
10.1016/0021-9290(87)90327-7
Elastic properties of cancellous bone: measurement by an ultrasonic technique.
R. B. Ashman (1987)
10.2495/978-1-85312-749-6/03
Patient Specific Bone And Joints ModelingAnd Tissue Characterization Derived FromMedical Images
M. B. H. Tho (2005)
Linear Ultrasonic Properties of Cortical Bone: In Vitro Studies
Guillaume Ha ¨ õat (2011)
10.1201/B17439-11
Knee Implant Model: A Sensitivity Study of Trabecular Stiffness on Periprosthetic Fracture
Duo Wai-Chi Wong (2014)
10.1007/s10439-018-1994-x
Investigating the Longitudinal Effect of Ovariectomy on Bone Properties Using a Novel Spatiotemporal Approach
Yongtao Lu (2018)
10.1007/s10237-015-0740-7
Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur
Diogo M. Geraldes (2016)
10.3109/03091909609008396
Cortical elasticity in aging rats with and without growth hormone treatments.
S. Kohles (1996)
10.1007/S00776-006-1104-Z
Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements
A. Basillais (2007)
10.1007/BF02347055
Anisotropy of Young's modulus of human tibial cortical bone
B. K. Hoffmeister (2006)
10.1117/12.434179
Measurement of material properties of hard and soft biological tissues by means of V(z) and V(f) curves obtained with acoustic microscopy
Claus Schiott Jorgensen (2001)
10.1002/AJPA.10225
Functional significance of cortical bone distribution in anthropoid mandibles: an in vitro assessment of bone strain under combined loads.
D. J. Daegling (2003)
10.1007/978-1-4419-8606-1_6
Quantitative Ultrasound for Bone Properties
P. Laugier (2002)
10.1177/154405910408300607
Nanomechanical Properties of Facial Sutures and Sutural Mineralization Front
P. Radhakrishnan (2004)
Computational Modeling of Hard Tissue Response and Fracture in the Lower Cervical Spine under Compression Including Age Effects
F. Khor (2018)
10.5821/SIBB.V13I1.1725
Estudio de la capacidad estabilizadora del peroné en fracturas de tibia de conejo
P. Miquel (2008)
Development of procedures for the design, optimization and manufacturing of customized orthopaedic and trauma implants: Geometrical/anatomical modelling from 3D medical imaging
M. Pinheiro (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar