Online citations, reference lists, and bibliographies.
← Back to Search

A Theory Of The Oxide-coated Cathode

G. Dearnaley
Published 1969 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract A new model is presented in order to explain a variety of previous observations on the oxide-coated thermionic cathode, as well as the behaviour of a number of other oxide layer structures. It is supposed that, during the activation process, conducting filaments of molecular dimensions are developed through the oxide coating, and that these are directly responsible for the electrical conductivity of the oxide and its high thermionic emission efficiency. A possible structure is suggested for such conducting filaments, consisting of a chain of metal atoms separated by oxygen vacancies, probably clustered along grain boundaries in the oxide. Earlier theories of oxide-coated cathode behaviour are summarized and their relation to the new theory is discussed.
This paper references
10.1063/1.1736064
Operation of Tunnel‐Emission Devices
C. Mead (1961)
10.1103/PHYSREV.49.78
Thermionic Emission from Tungsten and Thoriated Tungsten Filaments
W. B. Nottingham (1936)
10.1143/JPSJ.8.565B
The Influence of Impurity Atoms on Flicker Noise2)
Y. Inuishi (1953)
10.1103/PHYSREV.50.48
Thin Film Field Emission
L. Malter (1936)
10.1103/PHYSREV.25.671
Electron Emission From Oxide Coated Filaments
L. Koller (1925)
10.1063/1.1714934
Thermionic Emission from an Oxide‐Coated Cathode
H. Fan (1943)
10.1063/1.1698507
Semi‐Conducting Properties in Oxide Cathodes
N. Hannay (1949)
10.1016/0375-9601(67)90982-6
Electronic conduction through thin unsaturated oxide layers
G. Dearnaley (1967)
10.1103/PHYSREV.38.2193
Phenomena in Oxide Coated Filaments II. Origin of Enhanced Emission
J. A. Becker (1931)
10.1080/14786440408637250
LI. Some applications of the electron theory of matter
O. Richardson (1912)
10.1063/1.1702450
Electron Emission from Thin Al‐Al2O3‐Au Structures
H. Kanter (1962)
10.1049/sqj.1935.0081
Electron emission and adsorption phenomena
J. H. Boer (1935)
10.1007/bf01342523
Über das elektrostatische Emissions-Übermikroskop
W. Mecklenburg (1943)
10.1103/PHYSREV.70.33
The Temperature Dependence of Secondary Electron Emission from Oxide-Coated Cathodes
M. Pomerantz (1946)
10.1007/BF01375065
über die Feldelektronenemission an dünnen Isolatorschichten vom Typus Al-Al2O3-Cs2O
J. Mühlenpfordt (1938)
10.1016/S0065-2539(08)61100-2
Oxide Coated Cathodes
A. S. Eisenstein (1948)
10.1103/PHYSREV.67.166
An Investigation of Short-Time Thermionic Emission from Oxide-Coated Cathodes
R. L. Sproull (1945)
10.1103/PHYSREV.34.1323
Phenomena in Oxide Coated Filaments
J. A. Becker (1929)
10.1103/PHYSREV.26.71
The Schottky Effect in Low Frequency Circuits
J. B. Johnson (1925)
10.1063/1.1699417
Thermionic emission from oxide cathodes : retarding and accelerating fields
C. Hung (1950)
10.1049/REE.1967.0050
A hot electron, cold cathode, emitter
R. R. Verderber (1967)
10.1103/PHYSREV.26.360
Negative Ion Emission From Oxide Coated Filaments
H. Barton (1925)
10.1103/PHYSREV.35.1367
The Role of the Core Metal in Oxide Coated Filaments
E. F. Lowry (1930)
10.1103/REVMODPHYS.7.95
Thermionic Electron Emission and Adsorption Part I. Thermionic Emission
J. Becker (1935)
10.1021/JA01279A063
The Oxide-coated Filament. The Relation between Thermionic Emission and the Content of Free Alkaline-earth Metal
C. H. Prescott (1938)
10.1103/PHYSREV.52.519
Visual Observations on the Malter Effect
L. Koller (1937)
10.1063/1.1732868
Electronic Properties of Polysulfur Nitride
P. Kronick (1962)
10.1007/BF01400158
Austrittsarbeit bei Oxydkathoden
H. Rothe (1926)
10.1103/PHYSREV.73.1058
Secondary Electron Emission from Targets of Barium-Strontium Oxide
J. B. Johnson (1948)



This paper is referenced by
10.1557/JMR.2008.0093
Universal understanding of direct current transport properties of ReRAM based on a parallel resistance model
K. Kinoshita (2008)
10.1134/s1063739720040058
Influence of Oxygen Pressure on Switching in Memoristors Based on Electromoformed Open Sandwich Structures
V. M. Mordvintsev (2020)
10.1080/00207218808945277
Electrical conduction in thin films based on In2O3 and In2O3/CeO2
W. I. Khleif (1988)
Modeling of Emerging Resistive Switching Based Memory Cells
A. Markov (2014)
Novel processing routes for oxide cathode emission materials
Xiangqian Shen (2000)
10.1016/S0042-207X(76)81130-X
Metal-insulator-metal sandwich structures with anomalous properties
H. Biederman (1976)
10.1063/1.3045951
Etching-dependent reproducible memory switching in vertical SiO2 structures
J. Yao (2008)
10.1088/0034-4885/32/2/301
Ion bombardment and implantation
G. Dearnaley (1969)
10.1080/00207217408900411
Some electrical properties of thin film copper–borosilicate glass–copper sandwiches intended for use as electron emitters
H. Bidadi (1974)
10.22028/D291-22625
Plasma-material interaction and electrode degradation in high voltage ignition discharges
N. Jeanvoine (2009)
10.1109/JDT.2006.874506
Resistivity network and structural model of the oxide cathode for CRT application
A.A. Hashim (2006)
10.1080/00207218708939176
Electrical conduction and observation of local defects in thin sandwich structures of Cu-SiO/CeO2-Cu
Z. T. Al‐Dhhan (1987)
10.1016/0040-6090(70)90133-1
Comments on A theory of the oxide cathode
N. Surplice (1970)
10.1088/0022-3727/30/8/015
A comparison of enhanced field emission from broad surfaces in direct-current and radiofrequency regimes
M. Luong (1997)
10.1088/0022-3727/13/6/022
Electrical phenomena occurring at the surface of electrically stressed metal cathodes. III. Current voltage characteristics of electroluminescent (k-spot) regions on broad area cathodes
R. E. Hurley (1980)
10.1016/S0042-207X(78)80021-9
19. Electrode surface effects in the high voltage glow discharge
R. E. Hurley (1978)
10.1088/0034-4885/75/7/076502
Emerging memories: resistive switching mechanisms and current status.
D. Jeong (2012)
10.1109/JDT.2005.864158
Activation process-dependent characteristics of novel thermionic oxide cathodes for CRT application
A.A. Hashim (2006)
10.1088/0022-3727/12/12/026
Electrical phenomena at the surface of electrically stressed metal cathodes. I. Electroluminescence and breakdown phenomena with medium gap spacings (2-8 mm)
R. E. Hurley (1979)
10.1016/0022-3093(70)90097-9
A model for filament growth and switching in amorphous oxide films
G. Dearnaley (1970)
10.1016/0022-3093(70)90062-1
A new model for defects in non-crystalline silicon dioxide
A. G. Revesz (1970)
10.1007/BF01115789
Electrical conduction in thin films of CeO2/GeO2
Z. T. Al‐Dhhan (1988)
10.1002/PSSA.2210650102
The electrical and structural properties of thin films of polymers deposited from the vapour phase, with special reference to polypropylene
C. Hogarth (1981)
10.1002/smll.200901100
Resistive switching in nanogap systems on SiO2 substrates.
J. Yao (2009)
10.1080/00207217908938651
The electroforming of thin films of polypropylene
C. Hogarth (1979)
10.1080/00207218408938865
Further studies on the electroforming of thin films of evaporated polypropylene
T. Iqbal (1984)
10.1021/nn204907t
Symmetrical negative differential resistance behavior of a resistive switching device.
Y. Du (2012)
10.1088/0034-4885/33/3/306
Electrical phenomena in amorphous oxide films
G. Dearnaley (1970)
10.1080/00207218808945295
The electroforming of thin films of copolymer of polypropylene and polyethylene formed by vacuum evaporation
T. Iqbal (1988)
10.1051/epjap/2020190363
The temperature dependence of the work function of oxide electrodes in fluorescent lamps
R. Langer (2020)
10.1016/J.ELECTACTA.2011.12.054
A unified thermodynamic theory for the formation of anodized metal oxide structures
M. Wang (2012)
10.1016/S0038-1101(71)80006-0
Hot electron transport and emission in Au-SiO-Au thin film cathodes
R. Collins (1971)
See more
Semantic Scholar Logo Some data provided by SemanticScholar