Online citations, reference lists, and bibliographies.
← Back to Search

Gap Formation During Controlled Motion After Flexor Tendon Repair In Zone II: A Prospective Clinical Study.

K. L. Silfverskiöld, E. J. May, A. Törnvall
Published 1992 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Intratendinous metal markers were used to study the formation of gaps in flexor digitorum profundus tendon repairs during and after early controlled motion with dynamic flexion traction and to evaluate their significance for results in 34 digits with repairs in zone II. The mean (+/- SD) final repair elongation was 3.2 (+/- 3.6) mm. Linear regression analysis showed a general trend toward an inverse relationship between elongation and clinical results in terms of active interphalangeal joint range of motion, but the correlation was weak, and in the individual case gap formation was a poor predictor of clinical result. Gaps of up to 10 mm were quite compatible with good function. The results indicate that controlled motion is effective in restricting the formation of adhesions associated with gap formation during postoperative immobilization.
This paper references
10.1016/S0363-5023(87)80213-7
The effect of immediate constrained digital motion on the strength of flexor tendon repairs in chickens.
T. Hitchcock (1987)
10.1016/S0894-1130(89)80022-5
A new power source in dynamic splinting: Clinical experience and results
E. May (1989)
10.1097/00006534-197705000-00014
EXPERIMENTAL EVALUATION OF FACTORS AFFECTING THE STRENGTH OF TENDON REPAIRS
L. Ketchum (1977)
10.1097/00006534-196107000-00073
The significance of each component of the flexor mechanism in tendon healing
W. K. Lindsay (1961)
10.1016/S0007-1226(60)80003-3
Digital flexor tendons: an experimental study. Part II. The significance of a gap occurring at the line of suture.
W. Lindsay (1960)
10.1016/S0266-7681(85)80055-3
The mechanical properties of human flexor tendons in relation to artificial tendons.
D. Pring (1985)
10.1097/00000637-198108000-00006
Further Evolution of the Grasping Technique for Tendon Repair
S. Kim (1981)
10.1016/S0007-1226(59)80045-X
Digital flexor tendons: An experimental study: Part I. The significance of each component of the flexor mechanism in tendon healing
W. K. Lindsay (1960)
10.1016/S0363-5023(88)80094-7
Biomechanical studies of running suture for flexor tendon repair in dogs.
G. T. Lin (1988)
10.1016/S0363-5023(80)80101-8
Digital function following flexor tendon repair in Zone II: A comparison of immobilization and controlled passive motion techniques.
J. Strickland (1980)
10.1097/00000658-194005000-00048
THE RATE OF HEALING OF TENDONS* AN EXPERIMENTAL STUDY OF TENSILE STRENGTH
M. Mason (1941)
10.1111/J.1532-950X.1989.TB01095.X
Strength characteristics and failure modes of suture patterns in severed goat tendons.
G. J. Pjanowski (1989)
10.1016/S0363-5023(83)80012-4
Elongation of the repair configuration following flexor tendon repair.
H. Seradge (1983)
10.1016/0266-7681(89)90135-6
Flexor tendon repair: significant gain in strength from the Halsted peripheral suture technique.
P. F. Wade (1989)
10.1016/0363-5023(92)90127-B
Flexor digitorum profundus tendon excursions during controlled motion after flexor tendon repair in zone II: a prospective clinical study.
K. L. Silfverskiöld (1992)
10.1007/BF00266335
An experimental study of the repair and gliding function of digital flexor tendon following injury
Yukuo Tokita (2004)
10.1016/0266-7681(86)90018-5
Primary flexor tendon repair: the mechanical limitations of the modified Kessler technique.
P. F. Wade (1986)
10.1016/0021-9290(68)90038-9
Stress-strain characteristics and tensile strength of unembalmed human tendon.
J. V. Benedict (1968)
10.1016/S0072-968X(77)80122-8
Eliminating the Gap in Flexor Tendon Surgery
H. Becker (1977)
10.3109/02844318109103414
Elongation in profundus tendon repair. A clinical and radiological study.
A. Ejeskär (1981)
10.1016/0266-7681(85)90001-4
In vitro studies of a new method of flexor tendon repair.
R. Savage (1985)



This paper is referenced by
10.1016/S0246-0467(03)00063-1
Lésions récentes des fléchisseurs des doigts
T. Dubert (2006)
10.1197/J.JHT.2005.01.013
The scientific basis for advances in flexor tendon surgery.
J. Strickland (2005)
10.1016/S0007-1226(97)91153-X
Comparative biomechanical analysis of a new circumferential flexor tendon repair and a modified Kessler repair.
L. Ion (1997)
10.1109/TUFFC.2019.2938147
Characterization of Hand Tendons Through High-Frequency Ultrasound Elastography
P. Chen (2020)
10.2106/00004623-199810000-00011
Use of the Taguchi Method for Biomechanical Comparison of Flexor-Tendon-Repair Techniques to Allow Immediate Active Flexion. A New Method of Analysis and Optimization of Technique to Improve the Quality of the Repair*†
G. Singer (1998)
10.1007/s12593-012-0063-1
Tensile Strength of Flexor Tendon Repair Using Barbed Suture Material in a Dynamic Ex Vivo Model
P. Zeplin (2012)
10.1053/JHSU.1999.0751
Effect of the cross-sectional area of locking loops in flexor tendon repair.
H. Hatanaka (1999)
10.1053/JHSU.1999.0295
Biomechanical analysis of the cruciate four-strand flexor tendon repair.
E. McLarney (1999)
Development of a new flexor tendon repair technique performed with bioabsorbable poly-L/D-lactide (PLDLA) suture
A. Viinikainen (2008)
10.1197/J.JHT.2005.01.005
Friction of the gliding surface. Implications for tendon surgery and rehabilitation.
P. Amadio (2005)
10.1016/j.jhsa.2013.11.023
Biomechanical characteristics of suture anchor implants for flexor digitorum profundus repair.
G. Halát (2014)
10.1016/j.medengphy.2009.08.004
The effects of bone marrow stromal cell transplants on tendon healing in vitro.
C. Zhao (2009)
10.1038/s41598-018-28250-y
Introduction of a new repair technique in bony avulsion of the FDP tendon: A biomechanical study
G. Halát (2018)
10.1053/JHSU.2003.50053
Effects of direction of tendon lacerations on strength of tendon repairs.
J. Tan (2003)
10.1053/JHSU.2000.6456
The resistance of a four- and eight-strand suture technique to gap formation during tensile testing: an experimental study of repaired canine flexor tendons after 10 days of in vivo healing.
H. Dinopoulos (2000)
In-vivo ultrasound observations of the surgically repaired flexor digitorum profundus tendon: a case series
M. Bűhler (2012)
10.1007/978-3-642-45774-6_306
Prä- und postoperative Sonographie bei Fingerbeugesehnenrekonstruktionen in der Zone 2
M. Holch (1998)
10.1016/B978-0-323-03329-9.50066-0
Flexor and Extensor Tendon Injuries
P. Wright (2008)
10.1016/J.CLINBIOMECH.2007.08.016
Flexor tendon repair using the two-strand side-locking loop technique to tolerate aggressive active mobilization immediately after surgery.
S. Kuwata (2007)
10.1197/J.JHT.2005.01.009
Recent progress in flexor tendon healing. The modulation of tendon healing with rehabilitation variables.
M. Boyer (2005)
10.1007/s00132-015-3160-6
Rehabilitation nach Beugesehnenverletzungen an der Hand
A. Asmus (2015)
10.1016/S0266-7681(05)80081-6
Early Active Mobilization after Tendon Transfers Using Mesh Reinforced Suture Techniques
K. L. Silfverskiöld (1995)
10.1016/S0363-5023(97)80014-7
Effect of immobilization, immediate mobilization, and delayed mobilization on the resistance to digital flexion using a tendon injury model.
M. Halikis (1997)
10.1177/1753193408098479
Influence of Core Suture Geometry on Tendon Deformation and Gap Formation in Porcine Flexor Tendons
E. Walbeehm (2009)
10.1016/S0363-5023(96)80302-9
Cyclic stress testing after in vivo healing of canine flexor tendon lacerations.
Donald L. Pruitt (1996)
10.1016/j.jhsa.2012.09.030
The effect of suture preloading on the force to failure and gap formation after flexor tendon repair.
M. Vanhees (2013)
10.1007/s00064-008-1227-9
Die primäre Naht der Fingerbeugesehnen
C. Stephan (2008)
10.1007/s11552-008-9095-1
Does Strand Configuration and Number of Purchase Points Affect the Biomechanical Behavior of a Tendon Repair? A Biomechanical Evaluation Using Different Kessler Methods of Flexor Tendon Repair
Yunus Doğramacı (2008)
10.1016/J.HCL.2004.11.009
Flexor tendon biology.
M. Boyer (2005)
10.1016/J.MAIN.2014.07.010
Réparation primitive des tendons fléchisseurs en zone 2
P. Bellemère (2014)
10.1053/JHSU.2001.24959
The effect of flexor tendon repair bulk on tendon gliding during simulated active motion: an in vitro comparison of two-strand and six-strand techniques.
D. Sanders (2001)
10.1197/J.JHT.2005.01.007
The evolution of early mobilization of the repaired flexor tendon.
Karen M. Pettengill (2005)
See more
Semantic Scholar Logo Some data provided by SemanticScholar