Online citations, reference lists, and bibliographies.
← Back to Search

Fat Emulsions For Parenteral Nutrition. III: Lipofundin MCT/LCT Regimens For Total Parenteral Nutrition (TPN) With Low Electrolyte Load

R. H. Müller, S. Heinemann
Published 1994 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
The physical stability of three regimens for total parenteral nutrition (TPN) based on the MCT/LCT (50:50) emulsion Lipofundin MCT/LCT 1 was investigated. A range of different methods was employed for complete characterization of the feeding mixtures (sizing methods: photon correlation spectroscopy, microscopic photography. Coulter counter, laser diffractometer; zeta potential determination: laser Doppler anemometry). The regimens contained about 70 mmol/l 1:1 electrolytes and increasing concentrations of divalent cations (1.0–4.7 mmol/l e.g., calcium, magnesium). During the storage period of 21 days the mean diameter and the width of the bulk population remained unchanged. No increase in the number of particles larger than the bulk population could be detected in the homogeneous mixtures of the regimens (after shaking). Analysis of the top phase (surface layer) revealed a slight increase in the number of large particles in the two regimens with higher content of divalent cations. This indicates the importance of the sampling procedure. Microscopic and Coulter counter analysis proved to be most sensitive in detecting these larger droplets. All three regimens were considered as physically stable for at least 21 days.
This paper references
10.1016/0021-9797(91)90451-D
Electrophoretic properties of emulsions for parenteral nutrition determined by laser light scattering and application of the amplitude-weighted phase structure function (AWPS)
B. Stampa (1991)
10.1111/J.2042-7158.1979.TB11550.X
THE STABILIZATION OF INTRAVENOUS FAT EMULSIONS USING PHOSPHOLIPIDS, THE EFFECT OF MINOR COMPONENTS
S. Davis (1979)
10.1093/AJHP/44.10.2271
Stability of total nutrient admixtures using various intravenous fat emulsions.
F. A. Sayeed (1987)
10.1111/j.2042-7158.1964.tb07382.x
Physical and biological changes in an artificial fat emulsion during storage
J. Boberg (1964)
Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization, and In Vivo Distribution
R. Mueller (1991)
10.1007/978-94-011-5918-0_19
The stability of fat emulsions for intravenous administration
S. Davis (1983)
10.1016/0261-5614(92)90031-K
Fat emulsions for parenteral nutrition. I: Evaluation of microscopic and laser light scattering methods for the determination of the physical stability.
R. Mueller (1992)
10.1016/0166-6622(84)80017-7
Bilayer fluidity of non-ionic vesicles. An investigation by differential polarized phase fluorometry
A. Ribier (1984)
10.1016/0378-5173(90)90271-5
The electrokinetic properties of phospholipid stabilized fat emulsions. IV. The effect of glucose and of pH
C. Washington (1990)
10.1016/0378-5173(90)90180-C
The electrokinetic properties of phospholipid-stabilized fat emulsions: III. Interdroplet potentials and stability ratios in monovalent electrolytes
C. Washington (1990)
10.1016/0261-5614(93)90050-E
Fat emulsions for parenteral nutrition II: Characterisation and physical long-term stability of Lipofundin MCT LCT.
R. Mueller (1993)
10.1177/0148607181005002115
Medium chain triglycerides in parenteral nutrition.
D. Sailer (1981)
10.1177/106002807300700805
Intralipid Compatibility Study
J. Frank (1973)
10.1016/0021-9797(87)90024-5
Influence of external environment on microviscosity in micelles
Shigeyoshi Miyagishi (1987)
10.1111/j.1365-2710.1986.tb00826.x
RESEARCH AND REPORTS:STUDIES ON FAT EMULSIONS IN COMBINED NUTRITION SOLUTIONS
S. Davis (1986)
10.1159/000221573
Allgemeine Charakteristika und Fragen zur Galenik von Fettemulsionen
G. Kleinberger (1983)
10.1016/0378-5173(82)90138-7
Stability of a fat emulsion based intravenous feeding mixture
W. R. Burnham (1982)
非経口的栄養剤のための脂肪性エマルジョン III 低電解質負荷非経口的栄養剤のためのリポフンジンMCT/LCT法について
H. MuellerR (1994)
10.1016/0005-2736(76)90183-8
Microviscosity parameters and protein mobility in biological membranes.
M. Shinitzky (1976)
10.1111/j.1365-2710.1980.tb00958.x
THE EFFECT OF ADDITIVES ON THE PHYSICAL PROPERTIES OF A PHOSPHOLIPID‐STABILIZED SOYBEAN OIL EMULSION
C. Kawilarang (1980)
10.1177/106002808101500304
A Study of Intravenous Emulsion Compatibility: Effects of Dextrose, Amino Acids, and Selected Electrolytes
Curtis D. Black (1981)
10.1111/j.1365-2710.1984.tb01076.x
COMPATIBILITY AND STABILITY OF TPN MIXTURES IN BIG BAGS
M. Allwood (1984)
Intralipid-its rational use in parenteral nutrition of the newborn.
H. Bryan (1976)
10.1016/0005-2736(81)90148-6
Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles.
N. Düzgüneş (1981)



This paper is referenced by
Parenterale Ernährung mit stabilitätsgeprüften, modularen Standardnährlösungen in der Neonatologie
Philosophisch-Naturwissenschaftlichen Fakultät (2004)
10.1186/CC5
Twenty-nine day study of stability for six different parenteral nutrition mixtures
J. Desport (1997)
Physikochemische Kompatibilität und Emulsionsstabilität von Propofol in Kombination mit häufig applizierten Analgetika und Sedativa
F. Gersonde (2016)
10.1016/0168-3659(94)90047-7
Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization
C. Schwarz (1994)
10.2478/v10007-012-0040-z
Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled
C. Pardeshi (2012)
EXPERIMENTAL AND MODELING STUDIES ON THE FORMULATION OF STABLE LIPID NANOPARTICLE DISPERSIONS
Y. Yang (2015)
10.1016/S0378-5173(99)00086-1
Physicochemical properties of chitosan-lipid emulsions and their stability during the autoclaving process.
M. Jumaa (1999)
10.1080/026520499289185
Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization.
C. Schwarz (1999)
10.1016/S1773-2247(11)50006-1
Lecithin-based nanoemulsions
V. Klang (2011)
10.1016/S0378-5173(98)00092-1
Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions
C. Freitas (1998)
10.1016/S0378-5173(98)00222-1
The stabilization of parenteral fat emulsion using non-ionic ABA copolymer surfactant
M. Jumaa (1998)
Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles
S. Martins (2007)
10.1016/J.EJPB.2005.12.007
Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles.
J. Jee (2006)
10.1016/S0169-409X(01)00105-3
Solid lipid nanoparticles: production, characterization and applications.
W. Mehnert (2001)
Development and characterization of new dosage forms based on drug containing aqueous colloidal polymer dispersion
C. Loira-Pastoriza (2013)
Abgrenzung der verschiedenen Schadensersatzansprüche
Long Jiang (2001)
10.1081/DDC-100108374
Development of a Novel Parenteral Formulation for Tetrazepam Using a Lipid Emulsion
M. Jumaa (2001)
10.1016/J.ADDR.2012.09.021
Solid lipid nanoparticles
W. Mehnert (2012)
10.1016/j.ultsonch.2017.08.018
Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs.
R. Kumar (2018)
10.1016/S0985-0562(97)80044-1
Différentes méthodes de contrôle granulométrique des émulsions lipidiques appliquées à l'étude de la stabilité de mélanges ternaires destinés à la nutrition parentérale infantile
Jean‐Michel Lestreit (1997)
10.1016/S1773-2247(08)50017-7
Medium-chain triglycerides based oil-in-water microemulsions for intravenous administration: formulation, characterization and in vitro hemolytic activities
H. Hu (2008)
10.2147/IJN.S54413
Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability
W. M. Ibrahim (2014)
10.1016/S0939-6411(01)00167-9
Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media.
E. Zimmermann (2001)
Investigations on the transfer of lipophilic drug models from lipid nanoparticles to lipophilic acceptor compartments using different techniques
Mohamed rer. nat. Dawound (2011)
10.3390/antiox9100998
Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds
A. Borges (2020)
10.1016/J.JDDST.2016.10.012
Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery
J. Hecq (2016)
10.1016/S0939-6411(00)00087-4
Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.
R. Mueller (2000)
Semantic Scholar Logo Some data provided by SemanticScholar